New upper bounds on sphere packings II
Geometry & topology, Tome 6 (2002) no. 1, pp. 329-353.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We continue the study of the linear programming bounds for sphere packing introduced by Cohn and Elkies. We use theta series to give another proof of the principal theorem, and present some related results and conjectures.

DOI : 10.2140/gt.2002.6.329
Keywords: sphere packing, linear programming bounds, lattice, theta series, Laguerre polynomial, Bessel function

Cohn, Henry 1

1 Microsoft Research, One Microsoft Way, Redmond, Washington 98052-6399, USA
@article{GT_2002_6_1_a9,
     author = {Cohn, Henry},
     title = {New upper bounds on sphere packings {II}},
     journal = {Geometry & topology},
     pages = {329--353},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2002},
     doi = {10.2140/gt.2002.6.329},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.329/}
}
TY  - JOUR
AU  - Cohn, Henry
TI  - New upper bounds on sphere packings II
JO  - Geometry & topology
PY  - 2002
SP  - 329
EP  - 353
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.329/
DO  - 10.2140/gt.2002.6.329
ID  - GT_2002_6_1_a9
ER  - 
%0 Journal Article
%A Cohn, Henry
%T New upper bounds on sphere packings II
%J Geometry & topology
%D 2002
%P 329-353
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.329/
%R 10.2140/gt.2002.6.329
%F GT_2002_6_1_a9
Cohn, Henry. New upper bounds on sphere packings II. Geometry & topology, Tome 6 (2002) no. 1, pp. 329-353. doi : 10.2140/gt.2002.6.329. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.329/

[1] G E Andrews, R Askey, R Roy, Special functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press (1999)

[2] R Ben Ghanem, C Frappier, Explicit quadrature formulae for entire functions of exponential type, J. Approx. Theory 92 (1998) 267

[3] N G De Bruijn, Asymptotic methods in analysis, Dover Publications (1981)

[4] H Cohn, N Elkies, New upper bounds on sphere packings I, Ann. of Math. $(2)$ 157 (2003) 689

[5] J H Conway, N A Sloane, Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften 290, Springer (1999)

[6] P J Davis, Interpolation and approximation, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London (1963)

[7] A Erdélyi, W Magnus, F Oberhettinger, F G Tricomi, Higher transcendental functions Vol III, McGraw-Hill Book Company, New York-Toronto-London (1955)

[8] D V Gorbachev, An extremal problem for entire functions of exponential spherical type, which is connected with the Levenshteĭn bound for the density of a packing of $\mathbb{R}^n$ by balls, Izv. Tul. Gos. Univ. Ser. Mat. Mekh. Inform. 6 (2000) 71

[9] L Hörmander, The analysis of linear partial differential operators I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer (1990)

[10] N N Lebedev, Special functions and their applications, Dover Publications (1972)

[11] N Levinson, On a Problem of Polya, Amer. J. Math. 58 (1936) 791

[12] E L Poiani, Mean Cesàro summability of Laguerre and Hermite series, Trans. Amer. Math. Soc. 173 (1972) 1

[13] W Rudin, Principles of mathematical analysis, McGraw-Hill Book Co. (1976)

[14] L Schwartz, Théorie des distributions, Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann (1966)

[15] V M Sidel’Nikov, Extremal polynomials used in bounds of code volume, Problems Inform. Transmission 16 (1980) 174

[16] K Stempak, Almost everywhere summability of Laguerre series, Studia Math. 100 (1991) 129

[17] M H Stone, The generalized Weierstrass approximation theorem, Math. Mag. 21 (1948) 167, 237

[18] G Szegö, Über gewisse Potenzreihen mit lauter positiven Koeffizienten, Math. Z. 37 (1933) 674

[19] G Szegő, Orthogonal polynomials, American Mathematical Society (1975)

[20] S Thangavelu, Lectures on Hermite and Laguerre expansions, Mathematical Notes 42, Princeton University Press (1993)

[21] G N Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press (1944)

[22] D V Widder, The Laplace Transform, Princeton Mathematical Series 6, Princeton University Press (1941)

[23] D V Widder, Advanced calculus, Dover Books on Advanced Mathematics, Dover Publications (1989)

Cité par Sources :