Torsion, TQFT, and Seiberg–Witten invariants of 3–manifolds
Geometry & topology, Tome 6 (2002) no. 1, pp. 27-58.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a conjecture of Hutchings and Lee relating the Seiberg–Witten invariants of a closed 3–manifold X with b1 1 to an invariant that “counts” gradient flow lines—including closed orbits—of a circle-valued Morse function on the manifold. The proof is based on a method described by Donaldson for computing the Seiberg–Witten invariants of 3–manifolds by making use of a “topological quantum field theory,” which makes the calculation completely explicit. We also realize a version of the Seiberg–Witten invariant of X as the intersection number of a pair of totally real submanifolds of a product of vortex moduli spaces on a Riemann surface constructed from geometric data on X. The analogy with recent work of Ozsváth and Szabó suggests a generalization of a conjecture of Salamon, who has proposed a model for the Seiberg–Witten–Floer homology of X in the case that X is a mapping torus.

DOI : 10.2140/gt.2002.6.27
Keywords: Seiberg–Witten invariant, torsion, topological quantum field theory

Mark, Thomas E 1

1 Department of Mathematics, University of California, Berkeley, California 94720-3840, USA
@article{GT_2002_6_1_a1,
     author = {Mark, Thomas E},
     title = {Torsion, {TQFT,} and {Seiberg{\textendash}Witten} invariants of 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {27--58},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2002},
     doi = {10.2140/gt.2002.6.27},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.27/}
}
TY  - JOUR
AU  - Mark, Thomas E
TI  - Torsion, TQFT, and Seiberg–Witten invariants of 3–manifolds
JO  - Geometry & topology
PY  - 2002
SP  - 27
EP  - 58
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.27/
DO  - 10.2140/gt.2002.6.27
ID  - GT_2002_6_1_a1
ER  - 
%0 Journal Article
%A Mark, Thomas E
%T Torsion, TQFT, and Seiberg–Witten invariants of 3–manifolds
%J Geometry & topology
%D 2002
%P 27-58
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.27/
%R 10.2140/gt.2002.6.27
%F GT_2002_6_1_a1
Mark, Thomas E. Torsion, TQFT, and Seiberg–Witten invariants of 3–manifolds. Geometry & topology, Tome 6 (2002) no. 1, pp. 27-58. doi : 10.2140/gt.2002.6.27. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.27/

[1] S B Bradlow, Vortices in holomorphic line bundles over closed Kähler manifolds, Comm. Math. Phys. 135 (1990) 1

[2] S K Donaldson, Monopoles, Knots and Vortices, (1997)

[3] S K Donaldson, Topological field theories and formulae of Casson and Meng–Taubes, from: "Proceedings of the Kirbyfest (Berkeley, CA, 1998)", Geom. Topol. Monogr. 2, Geom. Topol. Publ., Coventry (1999) 87

[4] R Fintushel, R J Stern, Knots, links, and 4–manifolds, Invent. Math. 134 (1998) 363

[5] M Hutchings, Y J Lee, Circle-valued Morse theory and Reidemeister torsion, Geom. Topol. 3 (1999) 369

[6] M Hutchings, Y J Lee, Circle-valued Morse theory, Reidemeister torsion, and Seiberg–Witten invariants of 3–manifolds, Topology 38 (1999) 861

[7] E N Ionel, T H Parker, Gromov invariants and symplectic maps, Math. Ann. 314 (1999) 127

[8] A Jaffe, C Taubes, Vortices and monopoles, Progress in Physics 2, Birkhäuser (1980)

[9] I G Macdonald, Symmetric products of an algebraic curve, Topology 1 (1962) 319

[10] G Meng, C H Taubes, $\underline{\mathrm{SW}}=$ Milnor torsion, Math. Res. Lett. 3 (1996) 661

[11] J Milnor, A duality theorem for Reidemeister torsion, Ann. of Math. $(2)$ 76 (1962) 137

[12] J Milnor, Lectures on the $h$–cobordism theorem, Princeton University Press (1965)

[13] T Mrowka, P Ozsváth, B Yu, Seiberg–Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997) 685

[14] P Ozsváth, Z Szabó, On Heegaard diagrams and holomorphic disks, from: "European Congress of Mathematics", Eur. Math. Soc., Zürich (2005) 769

[15] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. $(2)$ 159 (2004) 1159

[16] D A Salamon, Seiberg–Witten invariants of mapping tori, symplectic fixed points, and Lefschetz numbers, from: "Proceedings of 6th Gökova Geometry–Topology Conference" (1999) 117

[17] V G Turaev, Reidemeister torsion in knot theory, Uspekhi Mat. Nauk 41 (1986) 97, 240

Cité par Sources :