Seiberg–Witten invariants and surface singularities
Geometry & topology, Tome 6 (2002) no. 1, pp. 269-328.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We formulate a very general conjecture relating the analytical invariants of a normal surface singularity to the Seiberg–Witten invariants of its link provided that the link is a rational homology sphere. As supporting evidence, we establish its validity for a large class of singularities: some rational and minimally elliptic (including the cyclic quotient and “polygonal”) singularities, and Brieskorn–Hamm complete intersections. Some of the verifications are based on a result which describes (in terms of the plumbing graph) the Reidemeister–Turaev sign refined torsion (or, equivalently, the Seiberg–Witten invariant) of a rational homology 3–manifold M, provided that M is given by a negative definite plumbing. These results extend previous work of Artin, Laufer and S S-T Yau, respectively of Fintushel–Stern and Neumann–Wahl.

DOI : 10.2140/gt.2002.6.269
Keywords: (links of) surface singularities, ($\mathbb{Q}$–)Gorenstein singularities, rational singularities, Brieskorn–Hamm complete intersections, geometric genus, Seiberg–Witten invariants of $\mathbb{Q}$–homology spheres, Reidemeister–Turaev torsion, Casson–Walker invariant

Némethi, András 1 ; Nicolaescu, Liviu I 2

1 Department of Mathematics, Ohio State University, Columbus, Ohio 43210, USA
2 Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556, USA
@article{GT_2002_6_1_a8,
     author = {N\'emethi, Andr\'as and Nicolaescu, Liviu I},
     title = {Seiberg{\textendash}Witten invariants and surface singularities},
     journal = {Geometry & topology},
     pages = {269--328},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2002},
     doi = {10.2140/gt.2002.6.269},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.269/}
}
TY  - JOUR
AU  - Némethi, András
AU  - Nicolaescu, Liviu I
TI  - Seiberg–Witten invariants and surface singularities
JO  - Geometry & topology
PY  - 2002
SP  - 269
EP  - 328
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.269/
DO  - 10.2140/gt.2002.6.269
ID  - GT_2002_6_1_a8
ER  - 
%0 Journal Article
%A Némethi, András
%A Nicolaescu, Liviu I
%T Seiberg–Witten invariants and surface singularities
%J Geometry & topology
%D 2002
%P 269-328
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.269/
%R 10.2140/gt.2002.6.269
%F GT_2002_6_1_a8
Némethi, András; Nicolaescu, Liviu I. Seiberg–Witten invariants and surface singularities. Geometry & topology, Tome 6 (2002) no. 1, pp. 269-328. doi : 10.2140/gt.2002.6.269. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.269/

[1] N A’Campo, La fonction zêta d'une monodromie, Comment. Math. Helv. 50 (1975) 233

[2] V I Arnol’D, S M Guseĭn-Zade, A N Varchenko, Singularities of differentiable maps Vol II, Monographs in Mathematics 83, Birkhäuser (1988)

[3] M Artin, Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962) 485

[4] M Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966) 129

[5] E Brieskorn, Beispiele zur Differentialtopologie von Singularitäten, Invent. Math. 2 (1966) 1

[6] W Chen, Casson's invariant and Seiberg–Witten gauge theory, Turkish J. Math. 21 (1997) 61

[7] O Collin, N Saveliev, A geometric proof of the Fintushel–Stern formula, Adv. Math. 147 (1999) 304

[8] O Collin, Equivariant Casson invariant for knots and the Neumann–Wahl formula, Osaka J. Math. 37 (2000) 57

[9] A H Durfee, The signature of smoothings of complex surface singularities, Math. Ann. 232 (1978) 85

[10] R Fintushel, R J Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. $(3)$ 61 (1990) 109

[11] M Furuta, B Steer, Seifert fibred homology 3–spheres and the Yang–Mills equations on Riemann surfaces with marked points, Adv. Math. 96 (1992) 38

[12] H Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962) 331

[13] G M Greuel, J Steenbrink, On the topology of smoothable singularities, from: "Singularities, Part 1 (Arcata, Calif., 1981)", Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 535

[14] R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. $(2)$ 148 (1998) 619

[15] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999)

[16] H A Hamm, Exotische Sphären als Umgebungsränder in speziellen komplexen Räumen, Math. Ann. 197 (1972) 44

[17] F Hirzebruch, Pontrjagin classes of rational homology manifolds and the signature of some affine hypersurfaces, from: "Proceedings of Liverpool Singularities Symposium, II (1969/1970)", Springer (1971)

[18] S Ishii, The invariant $-K^2$ and continued fractions for 2–dimensional cyclic quotient singularities, Abh. Math. Sem. Univ. Hamburg 72 (2002) 207

[19] M Jankins, W D Neumann, Lectures on Seifert manifolds, Brandeis Lecture Notes 2, Brandeis University (1983)

[20] F Hirzebruch, D Zagier, The Atiyah–Singer theorem and elementary number theory, Mathematics Lecture Series 3, Publish or Perish (1974)

[21] H B Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977) 1257

[22] H B Laufer, On $\mu $ for surface singularities, from: "Several complex variables (Proc. Sympos. Pure Math., Vol XXX, Part 1, Williams Coll., Williamstown, Mass., 1975)", Amer. Math. Soc. (1977) 45

[23] C Lescop, Global surgery formula for the Casson–Walker invariant, Annals of Mathematics Studies 140, Princeton University Press (1996)

[24] Y Lim, Seiberg–Witten invariants for 3–manifolds in the case $b_1=0$ or 1, Pacific J. Math. 195 (2000) 179

[25] E Looijenga, J Wahl, Quadratic functions and smoothing surface singularities, Topology 25 (1986) 261

[26] M Marcolli, B L Wang, Variants of equivariant Seiberg–Witten Floer homology, from: "Spectral geometry of manifolds with boundary and decomposition of manifolds", Contemp. Math. 366, Amer. Math. Soc. (2005) 225

[27] T Mrowka, P Ozsváth, B Yu, Seiberg–Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997) 685

[28] A Némethi, “Weakly” elliptic Gorenstein singularities of surfaces, Invent. Math. 137 (1999) 145

[29] A Némethi, Five lectures on normal surface singularities, from: "Low dimensional topology (Eger, 1996/Budapest, 1998)", Bolyai Soc. Math. Stud. 8, János Bolyai Math. Soc. (1999) 269

[30] A Némethi, The signature of $f(x,y)+z^N$, from: "Singularity theory (Liverpool, 1996)", London Math. Soc. Lecture Note Ser. 263, Cambridge Univ. Press (1999) 131

[31] A Némethi, Dedekind sums and the signature of $f(x,y)+z^N$, Selecta Math. $($N.S.$)$ 4 (1998) 361

[32] W D Neumann, Abelian covers of quasihomogeneous surface singularities, from: "Singularities, Part 2 (Arcata, Calif., 1981)", Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 233

[33] W D Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981) 299

[34] W D Neumann, F Raymond, Seifert manifolds, plumbing, $\mu $–invariant and orientation reversing maps, from: "Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977)", Lecture Notes in Math. 664, Springer (1978) 163

[35] W Neumann, J Wahl, Casson invariant of links of singularities, Comment. Math. Helv. 65 (1990) 58

[36] W D Neumann, J Wahl, Universal abelian covers of surface singularities, from: "Trends in singularities", Trends Math., Birkhäuser (2002) 181

[37] L I Nicolaescu, Adiabatic limits of the Seiberg–Witten equations on Seifert manifolds, Comm. Anal. Geom. 6 (1998) 331

[38] L I Nicolaescu, Finite energy Seiberg–Witten moduli spaces on 4–manifolds bounding Seifert fibrations, Comm. Anal. Geom. 8 (2000) 1027

[39] L I Nicolaescu, Seiberg–Witten invariants of lens spaces, Canad. J. Math. 53 (2001) 780

[40] L I Nicolaescu, On the Reidemeister torsion of rational homology spheres, Int. J. Math. Math. Sci. 25 (2001) 11

[41] L I Nicolaescu, Eta invariants, spectral flows and finite energy Seiberg–Witten monopoles, from: "Geometric aspects of partial differential equations (Roskilde, 1998)", Contemp. Math. 242, Amer. Math. Soc. (1999) 85

[42] L I Nicolaescu, The Reidemeister torsion of 3–manifolds, de Gruyter Studies in Mathematics 30, Walter de Gruyter Co. (2003)

[43] H Pinkham, Normal surface singularities with $C^*$ action, Math. Ann. 227 (1977) 183

[44] H Rademacher, Some remarks on certain generalized Dedekind sums, Acta Arith. 9 (1964) 97

[45] H Rademacher, E Grosswald, Dedekind sums, The Carus Mathematical Monographs 16, The Mathematical Association of America, Washington, D.C. (1972)

[46] A Ratiu, PhD thesis, Université Paris VII

[47] J A Séade, A cobordism invariant for surface singularities, from: "Singularities, Part 2 (Arcata, Calif., 1981)", Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 479

[48] J H M Steenbrink, Mixed Hodge structures associated with isolated singularities, from: "Singularities, Part 2 (Arcata, Calif., 1981)", Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 513

[49] V Turaev, Torsion invariants of $\mathrm{Spin}^c$–structures on 3–manifolds, Math. Res. Lett. 4 (1997) 679

[50] V G Turaev, Surgery formula for torsions and Seiberg–Witten invariants of 3–manifolds,

[51] V Turaev, Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2001)

[52] F Van Der Blij, An invariant of quadratic forms mod 8, Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. 21 (1959) 291

[53] K Walker, An extension of Casson's invariant, Annals of Mathematics Studies 126, Princeton University Press (1992)

[54] S S T Yau, On maximally elliptic singularities, Trans. Amer. Math. Soc. 257 (1980) 269

Cité par Sources :