Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We formulate a very general conjecture relating the analytical invariants of a normal surface singularity to the Seiberg–Witten invariants of its link provided that the link is a rational homology sphere. As supporting evidence, we establish its validity for a large class of singularities: some rational and minimally elliptic (including the cyclic quotient and “polygonal”) singularities, and Brieskorn–Hamm complete intersections. Some of the verifications are based on a result which describes (in terms of the plumbing graph) the Reidemeister–Turaev sign refined torsion (or, equivalently, the Seiberg–Witten invariant) of a rational homology 3–manifold , provided that is given by a negative definite plumbing. These results extend previous work of Artin, Laufer and S S-T Yau, respectively of Fintushel–Stern and Neumann–Wahl.
Némethi, András 1 ; Nicolaescu, Liviu I 2
@article{GT_2002_6_1_a8, author = {N\'emethi, Andr\'as and Nicolaescu, Liviu I}, title = {Seiberg{\textendash}Witten invariants and surface singularities}, journal = {Geometry & topology}, pages = {269--328}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2002}, doi = {10.2140/gt.2002.6.269}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.269/} }
TY - JOUR AU - Némethi, András AU - Nicolaescu, Liviu I TI - Seiberg–Witten invariants and surface singularities JO - Geometry & topology PY - 2002 SP - 269 EP - 328 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.269/ DO - 10.2140/gt.2002.6.269 ID - GT_2002_6_1_a8 ER -
Némethi, András; Nicolaescu, Liviu I. Seiberg–Witten invariants and surface singularities. Geometry & topology, Tome 6 (2002) no. 1, pp. 269-328. doi : 10.2140/gt.2002.6.269. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.269/
[1] La fonction zêta d'une monodromie, Comment. Math. Helv. 50 (1975) 233
,[2] Singularities of differentiable maps Vol II, Monographs in Mathematics 83, Birkhäuser (1988)
, , ,[3] Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962) 485
,[4] On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966) 129
,[5] Beispiele zur Differentialtopologie von Singularitäten, Invent. Math. 2 (1966) 1
,[6] Casson's invariant and Seiberg–Witten gauge theory, Turkish J. Math. 21 (1997) 61
,[7] A geometric proof of the Fintushel–Stern formula, Adv. Math. 147 (1999) 304
, ,[8] Equivariant Casson invariant for knots and the Neumann–Wahl formula, Osaka J. Math. 37 (2000) 57
,[9] The signature of smoothings of complex surface singularities, Math. Ann. 232 (1978) 85
,[10] Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. $(3)$ 61 (1990) 109
, ,[11] Seifert fibred homology 3–spheres and the Yang–Mills equations on Riemann surfaces with marked points, Adv. Math. 96 (1992) 38
, ,[12] Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962) 331
,[13] On the topology of smoothable singularities, from: "Singularities, Part 1 (Arcata, Calif., 1981)", Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 535
, ,[14] Handlebody construction of Stein surfaces, Ann. of Math. $(2)$ 148 (1998) 619
,[15] 4–manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999)
, ,[16] Exotische Sphären als Umgebungsränder in speziellen komplexen Räumen, Math. Ann. 197 (1972) 44
,[17] Pontrjagin classes of rational homology manifolds and the signature of some affine hypersurfaces, from: "Proceedings of Liverpool Singularities Symposium, II (1969/1970)", Springer (1971)
,[18] The invariant $-K^2$ and continued fractions for 2–dimensional cyclic quotient singularities, Abh. Math. Sem. Univ. Hamburg 72 (2002) 207
,[19] Lectures on Seifert manifolds, Brandeis Lecture Notes 2, Brandeis University (1983)
, ,[20] The Atiyah–Singer theorem and elementary number theory, Mathematics Lecture Series 3, Publish or Perish (1974)
, ,[21] On minimally elliptic singularities, Amer. J. Math. 99 (1977) 1257
,[22] On $\mu $ for surface singularities, from: "Several complex variables (Proc. Sympos. Pure Math., Vol XXX, Part 1, Williams Coll., Williamstown, Mass., 1975)", Amer. Math. Soc. (1977) 45
,[23] Global surgery formula for the Casson–Walker invariant, Annals of Mathematics Studies 140, Princeton University Press (1996)
,[24] Seiberg–Witten invariants for 3–manifolds in the case $b_1=0$ or 1, Pacific J. Math. 195 (2000) 179
,[25] Quadratic functions and smoothing surface singularities, Topology 25 (1986) 261
, ,[26] Variants of equivariant Seiberg–Witten Floer homology, from: "Spectral geometry of manifolds with boundary and decomposition of manifolds", Contemp. Math. 366, Amer. Math. Soc. (2005) 225
, ,[27] Seiberg–Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997) 685
, , ,[28] “Weakly” elliptic Gorenstein singularities of surfaces, Invent. Math. 137 (1999) 145
,[29] Five lectures on normal surface singularities, from: "Low dimensional topology (Eger, 1996/Budapest, 1998)", Bolyai Soc. Math. Stud. 8, János Bolyai Math. Soc. (1999) 269
,[30] The signature of $f(x,y)+z^N$, from: "Singularity theory (Liverpool, 1996)", London Math. Soc. Lecture Note Ser. 263, Cambridge Univ. Press (1999) 131
,[31] Dedekind sums and the signature of $f(x,y)+z^N$, Selecta Math. $($N.S.$)$ 4 (1998) 361
,[32] Abelian covers of quasihomogeneous surface singularities, from: "Singularities, Part 2 (Arcata, Calif., 1981)", Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 233
,[33] A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981) 299
,[34] Seifert manifolds, plumbing, $\mu $–invariant and orientation reversing maps, from: "Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977)", Lecture Notes in Math. 664, Springer (1978) 163
, ,[35] Casson invariant of links of singularities, Comment. Math. Helv. 65 (1990) 58
, ,[36] Universal abelian covers of surface singularities, from: "Trends in singularities", Trends Math., Birkhäuser (2002) 181
, ,[37] Adiabatic limits of the Seiberg–Witten equations on Seifert manifolds, Comm. Anal. Geom. 6 (1998) 331
,[38] Finite energy Seiberg–Witten moduli spaces on 4–manifolds bounding Seifert fibrations, Comm. Anal. Geom. 8 (2000) 1027
,[39] Seiberg–Witten invariants of lens spaces, Canad. J. Math. 53 (2001) 780
,[40] On the Reidemeister torsion of rational homology spheres, Int. J. Math. Math. Sci. 25 (2001) 11
,[41] Eta invariants, spectral flows and finite energy Seiberg–Witten monopoles, from: "Geometric aspects of partial differential equations (Roskilde, 1998)", Contemp. Math. 242, Amer. Math. Soc. (1999) 85
,[42] The Reidemeister torsion of 3–manifolds, de Gruyter Studies in Mathematics 30, Walter de Gruyter Co. (2003)
,[43] Normal surface singularities with $C^*$ action, Math. Ann. 227 (1977) 183
,[44] Some remarks on certain generalized Dedekind sums, Acta Arith. 9 (1964) 97
,[45] Dedekind sums, The Carus Mathematical Monographs 16, The Mathematical Association of America, Washington, D.C. (1972)
, ,[46]
, PhD thesis, Université Paris VII[47] A cobordism invariant for surface singularities, from: "Singularities, Part 2 (Arcata, Calif., 1981)", Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 479
,[48] Mixed Hodge structures associated with isolated singularities, from: "Singularities, Part 2 (Arcata, Calif., 1981)", Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 513
,[49] Torsion invariants of $\mathrm{Spin}^c$–structures on 3–manifolds, Math. Res. Lett. 4 (1997) 679
,[50] Surgery formula for torsions and Seiberg–Witten invariants of 3–manifolds,
,[51] Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2001)
,[52] An invariant of quadratic forms mod 8, Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. 21 (1959) 291
,[53] An extension of Casson's invariant, Annals of Mathematics Studies 126, Princeton University Press (1992)
,[54] On maximally elliptic singularities, Trans. Amer. Math. Soc. 257 (1980) 269
,Cité par Sources :