Homotopy type of symplectomorphism groups of S2×S2
Geometry & topology, Tome 6 (2002) no. 1, pp. 195-218.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this paper we discuss the topology of the symplectomorphism group of a product of two 2–dimensional spheres when the ratio of their areas lies in the interval (1,2]. More precisely we compute the homotopy type of this symplectomorphism group and we also show that the group contains two finite dimensional Lie groups generating the homotopy. A key step in this work is to calculate the mod 2 homology of the group of symplectomorphisms. Although this homology has a finite number of generators with respect to the Pontryagin product, it is unexpected large containing in particular a free noncommutative ring with 3 generators.

DOI : 10.2140/gt.2002.6.195
Keywords: symplectomorphism group, Pontryagin ring, homotopy equivalence

Anjos, Silvia 1

1 Departamento de Matemática, Instituto Superior Técnico, Lisbon, Portugal
@article{GT_2002_6_1_a6,
     author = {Anjos, Silvia},
     title = {Homotopy type of symplectomorphism groups of {S2{\texttimes}S2}},
     journal = {Geometry & topology},
     pages = {195--218},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2002},
     doi = {10.2140/gt.2002.6.195},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.195/}
}
TY  - JOUR
AU  - Anjos, Silvia
TI  - Homotopy type of symplectomorphism groups of S2×S2
JO  - Geometry & topology
PY  - 2002
SP  - 195
EP  - 218
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.195/
DO  - 10.2140/gt.2002.6.195
ID  - GT_2002_6_1_a6
ER  - 
%0 Journal Article
%A Anjos, Silvia
%T Homotopy type of symplectomorphism groups of S2×S2
%J Geometry & topology
%D 2002
%P 195-218
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.195/
%R 10.2140/gt.2002.6.195
%F GT_2002_6_1_a6
Anjos, Silvia. Homotopy type of symplectomorphism groups of S2×S2. Geometry & topology, Tome 6 (2002) no. 1, pp. 195-218. doi : 10.2140/gt.2002.6.195. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.195/

Cité par Sources :