Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
From any configuration of finitely many points in Euclidean three-space, Atiyah constructed a determinant and conjectured that it was always non-zero. In this article we prove the conjecture for the case of four points.
Eastwood, Michael 1 ; Norbury, Paul 1
@article{GT_2001_5_2_a11, author = {Eastwood, Michael and Norbury, Paul}, title = {A proof of {Atiyah{\textquoteright}s} conjecture on configurations of four points in {Euclidean} three-space}, journal = {Geometry & topology}, pages = {885--893}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2001}, doi = {10.2140/gt.2001.5.885}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.885/} }
TY - JOUR AU - Eastwood, Michael AU - Norbury, Paul TI - A proof of Atiyah’s conjecture on configurations of four points in Euclidean three-space JO - Geometry & topology PY - 2001 SP - 885 EP - 893 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.885/ DO - 10.2140/gt.2001.5.885 ID - GT_2001_5_2_a11 ER -
%0 Journal Article %A Eastwood, Michael %A Norbury, Paul %T A proof of Atiyah’s conjecture on configurations of four points in Euclidean three-space %J Geometry & topology %D 2001 %P 885-893 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.885/ %R 10.2140/gt.2001.5.885 %F GT_2001_5_2_a11
Eastwood, Michael; Norbury, Paul. A proof of Atiyah’s conjecture on configurations of four points in Euclidean three-space. Geometry & topology, Tome 5 (2001) no. 2, pp. 885-893. doi : 10.2140/gt.2001.5.885. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.885/
[1] The geometry of classical particles, from: "Surveys in differential geometry", Surv. Differ. Geom., VII, Int. Press, Somerville, MA (2000) 1
,[2] Configurations of points, R. Soc. Lond. Philos. Trans. Ser. A 359 (2001) 1375
,[3] The geometry of point particles, R. Soc. Lond. Proc. Ser. A 458 (2002) 1089
, ,Cité par Sources :