A proof of Atiyah’s conjecture on configurations of four points in Euclidean three-space
Geometry & topology, Tome 5 (2001) no. 2, pp. 885-893.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

From any configuration of finitely many points in Euclidean three-space, Atiyah constructed a determinant and conjectured that it was always non-zero. In this article we prove the conjecture for the case of four points.

DOI : 10.2140/gt.2001.5.885
Keywords: Atiyah's conjecture, configuration space

Eastwood, Michael 1 ; Norbury, Paul 1

1 Pure Mathematics Department, Adelaide University, South Australia 5005, Australia
@article{GT_2001_5_2_a11,
     author = {Eastwood, Michael and Norbury, Paul},
     title = {A proof of {Atiyah{\textquoteright}s} conjecture on configurations of four points in {Euclidean} three-space},
     journal = {Geometry & topology},
     pages = {885--893},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2001},
     doi = {10.2140/gt.2001.5.885},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.885/}
}
TY  - JOUR
AU  - Eastwood, Michael
AU  - Norbury, Paul
TI  - A proof of Atiyah’s conjecture on configurations of four points in Euclidean three-space
JO  - Geometry & topology
PY  - 2001
SP  - 885
EP  - 893
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.885/
DO  - 10.2140/gt.2001.5.885
ID  - GT_2001_5_2_a11
ER  - 
%0 Journal Article
%A Eastwood, Michael
%A Norbury, Paul
%T A proof of Atiyah’s conjecture on configurations of four points in Euclidean three-space
%J Geometry & topology
%D 2001
%P 885-893
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.885/
%R 10.2140/gt.2001.5.885
%F GT_2001_5_2_a11
Eastwood, Michael; Norbury, Paul. A proof of Atiyah’s conjecture on configurations of four points in Euclidean three-space. Geometry & topology, Tome 5 (2001) no. 2, pp. 885-893. doi : 10.2140/gt.2001.5.885. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.885/

[1] M Atiyah, The geometry of classical particles, from: "Surveys in differential geometry", Surv. Differ. Geom., VII, Int. Press, Somerville, MA (2000) 1

[2] M Atiyah, Configurations of points, R. Soc. Lond. Philos. Trans. Ser. A 359 (2001) 1375

[3] M Atiyah, P Sutcliffe, The geometry of point particles, R. Soc. Lond. Proc. Ser. A 458 (2002) 1089

Cité par Sources :