Hofer–Zehnder capacity and length minimizing Hamiltonian paths
Geometry & topology, Tome 5 (2001) no. 2, pp. 799-830.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We use the criteria of Lalonde and McDuff to show that a path that is generated by a generic autonomous Hamiltonian is length minimizing with respect to the Hofer norm among all homotopic paths provided that it induces no non-constant closed trajectories in M. This generalizes a result of Hofer for symplectomorphisms of Euclidean space. The proof for general M uses Liu–Tian’s construction of S1–invariant virtual moduli cycles. As a corollary, we find that any semifree action of S1 on M gives rise to a nontrivial element in the fundamental group of the symplectomorphism group of M. We also establish a version of the area-capacity inequality for quasicylinders.

DOI : 10.2140/gt.2001.5.799
Keywords: symplectic geometry, Hamiltonian diffeomorphisms, Hofer norm, Hofer–Zehnder capacity

McDuff, Dusa 1 ; Slimowitz, Jennifer 2

1 Department of Mathematics, State University of New York, Stony Brook, New York 11794-3651, USA
2 Department of Mathematics, Rice University, Houston, Texas 77005, USA
@article{GT_2001_5_2_a9,
     author = {McDuff, Dusa and Slimowitz, Jennifer},
     title = {Hofer{\textendash}Zehnder capacity and length minimizing {Hamiltonian} paths},
     journal = {Geometry & topology},
     pages = {799--830},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2001},
     doi = {10.2140/gt.2001.5.799},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.799/}
}
TY  - JOUR
AU  - McDuff, Dusa
AU  - Slimowitz, Jennifer
TI  - Hofer–Zehnder capacity and length minimizing Hamiltonian paths
JO  - Geometry & topology
PY  - 2001
SP  - 799
EP  - 830
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.799/
DO  - 10.2140/gt.2001.5.799
ID  - GT_2001_5_2_a9
ER  - 
%0 Journal Article
%A McDuff, Dusa
%A Slimowitz, Jennifer
%T Hofer–Zehnder capacity and length minimizing Hamiltonian paths
%J Geometry & topology
%D 2001
%P 799-830
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.799/
%R 10.2140/gt.2001.5.799
%F GT_2001_5_2_a9
McDuff, Dusa; Slimowitz, Jennifer. Hofer–Zehnder capacity and length minimizing Hamiltonian paths. Geometry & topology, Tome 5 (2001) no. 2, pp. 799-830. doi : 10.2140/gt.2001.5.799. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.799/

[1] M Abreu, D Mcduff, Topology of symplectomorphism groups of rational ruled surfaces, J. Amer. Math. Soc. 13 (2000) 971

[2] M Bialy, L Polterovich, Geodesics of Hofer's metric on the group of Hamiltonian diffeomorphisms, Duke Math. J. 76 (1994) 273

[3] M Entov, $K$–area, Hofer metric and geometry of conjugacy classes in Lie groups, Invent. Math. 146 (2001) 93

[4] A Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989) 575

[5] A Floer, H Hofer, D Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995) 251

[6] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[7] H Hofer, Estimates for the energy of a symplectic map, Comment. Math. Helv. 68 (1993) 48

[8] H Hofer, C Viterbo, The Weinstein conjecture in the presence of holomorphic spheres, Comm. Pure Appl. Math. 45 (1992) 583

[9] H Hofer, E Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag (1994)

[10] F Lalonde, D Mcduff, Hofer's $L^\infty$–geometry: energy and stability of Hamiltonian flows I, II, Invent. Math. 122 (1995) 1, 35

[11] G Liu, G Tian, Weinstein conjecture and GW invariants, Commun. Contemp. Math. 2 (2000) 405

[12] G Liu, G Tian, Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998) 1

[13] G Liu, G Tian, On the equivalence of multiplicative structures in Floer homology and quantum homology, Acta Math. Sin. $($Engl. Ser.$)$ 15 (1999) 53

[14] G Lu, The Weinstein conjecture on some symplectic manifolds containing the holomorphic spheres, Kyushu J. Math. 52 (1998) 331

[15] D Mcduff, The virtual moduli cycle, from: "Northern California Symplectic Geometry Seminar", Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 73

[16] D Mcduff, Quantum homology of fibrations over $S^2$, Internat. J. Math. 11 (2000) 665

[17] D Mcduff, D Salamon, Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1998)

[18] D Mcduff, D Salamon, $J$–holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994)

[19] D Mcduff, S Tolman, Topological properties of Hamiltonian circle actions, IMRP Int. Math. Res. Pap. (2006) 72826, 1

[20] J Moser, Addendum to: “Periodic orbits near an equilibrium and a theorem by Alan Weinstein”, Comm. Pure Appl. Math. 31 (1978) 529

[21] S Piunikhin, D Salamon, M Schwarz, Symplectic Floer–Donaldson theory and quantum cohomology, from: "Contact and symplectic geometry (Cambridge, 1994)", Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 171

[22] L Polterovich, Gromov's $K$–area and symplectic rigidity, Geom. Funct. Anal. 6 (1996) 726

[23] L Polterovich, Hamiltonian loops and Arnold's principle, from: "Topics in singularity theory", Amer. Math. Soc. Transl. Ser. 2 180, Amer. Math. Soc. (1997) 181

[24] L Polterovich, Symplectic aspects of the first eigenvalue, J. Reine Angew. Math. 502 (1998) 1

[25] L Polterovich, The geometry of the group of symplectic diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2001)

[26] D Salamon, E Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992) 1303

[27] M Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000) 419

[28] C L Siegel, J K Moser, Lectures on celestial mechanics, Die Grundlehren der mathematischen Wissenschaften 187, Springer (1971)

[29] K F Siburg, New minimal geodesics in the group of symplectic diffeomorphisms, Calc. Var. Partial Differential Equations 3 (1995) 299

[30] J Slimowitz, PhD thesis, Stony Brook (1998)

[31] I Ustilovsky, Conjugate points on geodesics of Hofer's metric, Differential Geom. Appl. 6 (1996) 327

[32] A Weinstein, Normal modes for nonlinear Hamiltonian systems, Invent. Math. 20 (1973) 47

Cité par Sources :