Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We use the criteria of Lalonde and McDuff to show that a path that is generated by a generic autonomous Hamiltonian is length minimizing with respect to the Hofer norm among all homotopic paths provided that it induces no non-constant closed trajectories in . This generalizes a result of Hofer for symplectomorphisms of Euclidean space. The proof for general uses Liu–Tian’s construction of –invariant virtual moduli cycles. As a corollary, we find that any semifree action of on gives rise to a nontrivial element in the fundamental group of the symplectomorphism group of . We also establish a version of the area-capacity inequality for quasicylinders.
McDuff, Dusa 1 ; Slimowitz, Jennifer 2
@article{GT_2001_5_2_a9, author = {McDuff, Dusa and Slimowitz, Jennifer}, title = {Hofer{\textendash}Zehnder capacity and length minimizing {Hamiltonian} paths}, journal = {Geometry & topology}, pages = {799--830}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2001}, doi = {10.2140/gt.2001.5.799}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.799/} }
TY - JOUR AU - McDuff, Dusa AU - Slimowitz, Jennifer TI - Hofer–Zehnder capacity and length minimizing Hamiltonian paths JO - Geometry & topology PY - 2001 SP - 799 EP - 830 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.799/ DO - 10.2140/gt.2001.5.799 ID - GT_2001_5_2_a9 ER -
McDuff, Dusa; Slimowitz, Jennifer. Hofer–Zehnder capacity and length minimizing Hamiltonian paths. Geometry & topology, Tome 5 (2001) no. 2, pp. 799-830. doi : 10.2140/gt.2001.5.799. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.799/
[1] Topology of symplectomorphism groups of rational ruled surfaces, J. Amer. Math. Soc. 13 (2000) 971
, ,[2] Geodesics of Hofer's metric on the group of Hamiltonian diffeomorphisms, Duke Math. J. 76 (1994) 273
, ,[3] $K$–area, Hofer metric and geometry of conjugacy classes in Lie groups, Invent. Math. 146 (2001) 93
,[4] Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989) 575
,[5] Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995) 251
, , ,[6] Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307
,[7] Estimates for the energy of a symplectic map, Comment. Math. Helv. 68 (1993) 48
,[8] The Weinstein conjecture in the presence of holomorphic spheres, Comm. Pure Appl. Math. 45 (1992) 583
, ,[9] Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag (1994)
, ,[10] Hofer's $L^\infty$–geometry: energy and stability of Hamiltonian flows I, II, Invent. Math. 122 (1995) 1, 35
, ,[11] Weinstein conjecture and GW invariants, Commun. Contemp. Math. 2 (2000) 405
, ,[12] Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998) 1
, ,[13] On the equivalence of multiplicative structures in Floer homology and quantum homology, Acta Math. Sin. $($Engl. Ser.$)$ 15 (1999) 53
, ,[14] The Weinstein conjecture on some symplectic manifolds containing the holomorphic spheres, Kyushu J. Math. 52 (1998) 331
,[15] The virtual moduli cycle, from: "Northern California Symplectic Geometry Seminar", Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 73
,[16] Quantum homology of fibrations over $S^2$, Internat. J. Math. 11 (2000) 665
,[17] Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1998)
, ,[18] $J$–holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994)
, ,[19] Topological properties of Hamiltonian circle actions, IMRP Int. Math. Res. Pap. (2006) 72826, 1
, ,[20] Addendum to: “Periodic orbits near an equilibrium and a theorem by Alan Weinstein”, Comm. Pure Appl. Math. 31 (1978) 529
,[21] Symplectic Floer–Donaldson theory and quantum cohomology, from: "Contact and symplectic geometry (Cambridge, 1994)", Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 171
, , ,[22] Gromov's $K$–area and symplectic rigidity, Geom. Funct. Anal. 6 (1996) 726
,[23] Hamiltonian loops and Arnold's principle, from: "Topics in singularity theory", Amer. Math. Soc. Transl. Ser. 2 180, Amer. Math. Soc. (1997) 181
,[24] Symplectic aspects of the first eigenvalue, J. Reine Angew. Math. 502 (1998) 1
,[25] The geometry of the group of symplectic diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2001)
,[26] Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992) 1303
, ,[27] On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000) 419
,[28] Lectures on celestial mechanics, Die Grundlehren der mathematischen Wissenschaften 187, Springer (1971)
, ,[29] New minimal geodesics in the group of symplectic diffeomorphisms, Calc. Var. Partial Differential Equations 3 (1995) 299
,[30]
, PhD thesis, Stony Brook (1998)[31] Conjugate points on geodesics of Hofer's metric, Differential Geom. Appl. 6 (1996) 327
,[32] Normal modes for nonlinear Hamiltonian systems, Invent. Math. 20 (1973) 47
,Cité par Sources :