Instantons on cylindrical manifolds and stable bundles
Geometry & topology, Tome 5 (2001) no. 2, pp. 761-797.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let Σ be a smooth complex curve, and let S be the product ruled surface Σ × P1. We prove a correspondence conjectured by Donaldson between finite energy U(2)–instantons over Σ × S1 × , and rank 2 holomorphic bundles over S whose restrictions to Σ ×{0},Σ ×{} are stable.

DOI : 10.2140/gt.2001.5.761
Keywords: Anti-self-dual connection, stable bundle, product ruled surface

Owens, Brendan 1

1 Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
@article{GT_2001_5_2_a8,
     author = {Owens, Brendan},
     title = {Instantons on cylindrical manifolds and stable bundles},
     journal = {Geometry & topology},
     pages = {761--797},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2001},
     doi = {10.2140/gt.2001.5.761},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.761/}
}
TY  - JOUR
AU  - Owens, Brendan
TI  - Instantons on cylindrical manifolds and stable bundles
JO  - Geometry & topology
PY  - 2001
SP  - 761
EP  - 797
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.761/
DO  - 10.2140/gt.2001.5.761
ID  - GT_2001_5_2_a8
ER  - 
%0 Journal Article
%A Owens, Brendan
%T Instantons on cylindrical manifolds and stable bundles
%J Geometry & topology
%D 2001
%P 761-797
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.761/
%R 10.2140/gt.2001.5.761
%F GT_2001_5_2_a8
Owens, Brendan. Instantons on cylindrical manifolds and stable bundles. Geometry & topology, Tome 5 (2001) no. 2, pp. 761-797. doi : 10.2140/gt.2001.5.761. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.761/

[1] M F Atiyah, R Bott, The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983) 523

[2] P J Braam, S K Donaldson, Floer's work on instanton homology, knots and surgery, from: "The Floer memorial volume", Progr. Math. 133, Birkhäuser (1995) 195

[3] B Booß-Bavnbek, K P Wojciechowski, Elliptic boundary problems for Dirac operators, Mathematics: Theory Applications, Birkhäuser (1993)

[4] S K Donaldson, Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. $(3)$ 50 (1985) 1

[5] S K Donaldson, Floer homology and algebraic geometry, from: "Vector bundles in algebraic geometry (Durham, 1993)", London Math. Soc. Lecture Note Ser. 208, Cambridge Univ. Press (1995) 119

[6] S K Donaldson, Boundary value problems for Yang–Mills fields, J. Geom. Phys. 8 (1992) 89

[7] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1990)

[8] S Dostoglou, D Salamon, Instanton homology and symplectic fixed points, from: "Symplectic geometry", London Math. Soc. Lecture Note Ser. 192, Cambridge Univ. Press (1993) 57

[9] R Friedman, Algebraic surfaces and holomorphic vector bundles, Universitext, Springer (1998)

[10] R Friedman, J W Morgan, Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 27, Springer (1994)

[11] D Gilbarg, N S Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften 224, Springer (1983)

[12] G Y Guo, Yang–Mills fields on cylindrical manifolds and holomorphic bundles I, II, Comm. Math. Phys. 179 (1996) 737, 777

[13] J W Morgan, Comparison of the Donaldson polynomial invariants with their algebro-geometric analogues, Topology 32 (1993) 449

[14] J Morgan, T Mrowka, On the gluing theorem for instantons on manifolds containing long cylinders, preprint

[15] J W Morgan, T Mrowka, D Ruberman, The $L^2$–moduli space and a vanishing theorem for Donaldson polynomial invariants, Monographs in Geometry and Topology, II, International Press (1994)

[16] P E Newstead, Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Tata Institute of Fundamental Research (1978)

[17] Z Qin, PhD thesis, Columbia University (1990)

Cité par Sources :