Calculus of clovers and finite type invariants of 3–manifolds
Geometry & topology, Tome 5 (2001) no. 1, pp. 75-108.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A clover is a framed trivalent graph with some additional structure, embedded in a 3–manifold. We define surgery on clovers, generalizing surgery on Y–graphs used earlier by the second author to define a new theory of finite-type invariants of 3–manifolds. We give a systematic exposition of a topological calculus of clovers and use it to deduce some important results about the corresponding theory of finite type invariants. In particular, we give a description of the weight systems in terms of uni-trivalent graphs modulo the AS and IHX relations, reminiscent of the similar results for links. We then compare several definitions of finite type invariants of homology spheres (based on surgery on Y–graphs, blinks, algebraically split links, and boundary links) and prove in a self-contained way their equivalence.

DOI : 10.2140/gt.2001.5.75
Keywords: 3–manifolds, Y–graphs, finite type invariants, clovers

Garoufalidis, Stavros 1 ; Goussarov, Mikhail 2 ; Polyak, Michael 3

1 School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA
2
3 School of Mathematics, Tel-Aviv University, 69978 Tel-Aviv, Israel
@article{GT_2001_5_1_a2,
     author = {Garoufalidis, Stavros and Goussarov, Mikhail and Polyak, Michael},
     title = {Calculus of clovers and finite type invariants of 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {75--108},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2001},
     doi = {10.2140/gt.2001.5.75},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.75/}
}
TY  - JOUR
AU  - Garoufalidis, Stavros
AU  - Goussarov, Mikhail
AU  - Polyak, Michael
TI  - Calculus of clovers and finite type invariants of 3–manifolds
JO  - Geometry & topology
PY  - 2001
SP  - 75
EP  - 108
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.75/
DO  - 10.2140/gt.2001.5.75
ID  - GT_2001_5_1_a2
ER  - 
%0 Journal Article
%A Garoufalidis, Stavros
%A Goussarov, Mikhail
%A Polyak, Michael
%T Calculus of clovers and finite type invariants of 3–manifolds
%J Geometry & topology
%D 2001
%P 75-108
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.75/
%R 10.2140/gt.2001.5.75
%F GT_2001_5_1_a2
Garoufalidis, Stavros; Goussarov, Mikhail; Polyak, Michael. Calculus of clovers and finite type invariants of 3–manifolds. Geometry & topology, Tome 5 (2001) no. 1, pp. 75-108. doi : 10.2140/gt.2001.5.75. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.75/

[1] T D Cochran, P M Melvin, Finite type invariants of 3–manifolds,

[2] S Garoufalidis, On finite type 3–manifold invariants I, J. Knot Theory Ramifications 5 (1996) 441

[3] S Garoufalidis, J Levine, Finite type 3–manifold invariants, the mapping class group and blinks, J. Differential Geom. 47 (1997) 257

[4] M N Goussarov, Variations of knotted graphs. The geometric technique of $n$–equivalence, Algebra i Analiz 12 (2000) 79

[5] M Goussarov, Finite type invariants and $n$–equivalence of $3$–manifolds, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 517

[6] K Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1

[7] D Johnson, An abelian quotient of the mapping class group $\mathcal{I}_g$, Math. Ann. 249 (1980) 225

[8] D Johnson, A survey of the Torelli group, from: "Low-dimensional topology (San Francisco, Calif., 1981)", Contemp. Math. 20, Amer. Math. Soc. (1983) 165

[9] R Kirby, A calculus for framed links in $S^3$, Invent. Math. 45 (1978) 35

[10] S V Matveev, Generalized surgeries of three-dimensional manifolds and representations of homology spheres, Mat. Zametki 42 (1987) 268, 345

[11] S Matveev, M Polyak, A geometrical presentation of the surface mapping class group and surgery, Comm. Math. Phys. 160 (1994) 537

[12] H Murakami, Y Nakanishi, On a certain move generating link-homology, Math. Ann. 284 (1989) 75

[13] T Ohtsuki, Finite type invariants of integral homology 3–spheres, J. Knot Theory Ramifications 5 (1996) 101

Cité par Sources :