Generating function polynomials for legendrian links
Geometry & topology, Tome 5 (2001) no. 2, pp. 719-760.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

It is shown that, in the 1–jet space of the circle, the swapping and the flyping procedures, which produce topologically equivalent links, can produce nonequivalent legendrian links. Each component of the links considered is legendrian isotopic to the 1–jet of the 0–function, and thus cannot be distinguished by the classical rotation number or Thurston–Bennequin invariants. The links are distinguished by calculating invariant polynomials defined via homology groups associated to the links through the theory of generating functions. The many calculations of these generating function polynomials support the belief that these polynomials carry the same information as a refined version of Chekanov’s first order polynomials which are defined via the theory of holomorphic curves.

DOI : 10.2140/gt.2001.5.719
Keywords: contact topology, contact homology, generating functions, legendrian links, knot polynomials

Traynor, Lisa 1

1 Mathematics Department, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, USA
@article{GT_2001_5_2_a7,
     author = {Traynor, Lisa},
     title = {Generating function polynomials for legendrian links},
     journal = {Geometry & topology},
     pages = {719--760},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2001},
     doi = {10.2140/gt.2001.5.719},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.719/}
}
TY  - JOUR
AU  - Traynor, Lisa
TI  - Generating function polynomials for legendrian links
JO  - Geometry & topology
PY  - 2001
SP  - 719
EP  - 760
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.719/
DO  - 10.2140/gt.2001.5.719
ID  - GT_2001_5_2_a7
ER  - 
%0 Journal Article
%A Traynor, Lisa
%T Generating function polynomials for legendrian links
%J Geometry & topology
%D 2001
%P 719-760
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.719/
%R 10.2140/gt.2001.5.719
%F GT_2001_5_2_a7
Traynor, Lisa. Generating function polynomials for legendrian links. Geometry & topology, Tome 5 (2001) no. 2, pp. 719-760. doi : 10.2140/gt.2001.5.719. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.719/

[1] C C Adams, The knot book, W. H. Freeman and Company (1994)

[2] D Bennequin, Entrelacements et équations de Pfaff, from: "Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982)", Astérisque 107, Soc. Math. France (1983) 87

[3] , The Floer memorial volume, Progress in Mathematics 133, Birkhäuser Verlag (1995)

[4] Y V Chekanov, Critical points of quasifunctions, and generating families of Legendrian manifolds, Funktsional. Anal. i Prilozhen. 30 (1996) 56, 96

[5] Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441

[6] J H Conway, An enumeration of knots and links, and some of their algebraic properties, from: "Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967)", Pergamon (1970) 329

[7] Y Eliashberg, Legendrian and transversal knots in tight contact 3-manifolds, from: "Topological methods in modern mathematics (Stony Brook, NY, 1991)", Publish or Perish (1993) 171

[8] Y Eliashberg, Invariants in contact topology, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)" (1998) 327

[9] Y Eliashberg, M Gromov, Lagrangian intersection theory: finite-dimensional approach, from: "Geometry of differential equations", Amer. Math. Soc. Transl. Ser. 2 186, Amer. Math. Soc. (1998) 27

[10] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560

[11] E Ferrand, On Legendrian knots and polynomial invariants, Proc. Amer. Math. Soc. 130 (2002) 1169

[12] R K Guy, Unsolved problems in number theory, Problem Books in Mathematics, Springer (2004)

[13] L Ng, Invariants of Legendrian Links, PhD thesis, MIT (2001)

[14] L Ng, L Traynor, in preparation,

[15] S Tabachnikov, Estimates for the Bennequin number of Legendrian links from state models for knot polynomials, Math. Res. Lett. 4 (1997) 143

[16] D Théret, A complete proof of Viterbo's uniqueness theorem on generating functions, Topology Appl. 96 (1999) 249

[17] D Théret, A Lagrangian camel, Comment. Math. Helv. 74 (1999) 591

[18] L Traynor, Symplectic homology via generating functions, Geom. Funct. Anal. 4 (1994) 718

[19] L Traynor, Legendrian circular helix links, Math. Proc. Cambridge Philos. Soc. 122 (1997) 301

[20] L Traynor, A Legendrian stratification of rational tangles, J. Knot Theory Ramifications 7 (1998) 659

[21] C Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992) 685

[22] C Viterbo, Generating functions, symplectic geometry, and applications, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994)", Birkhäuser (1995) 537

Cité par Sources :