Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Associated to any finite flag complex there is a right-angled Coxeter group and a cubical complex on which acts properly and cocompactly. Its two most salient features are that (1) the link of each vertex of is and (2) is contractible. It follows that if is a triangulation of , then is a contractible –manifold. We describe a program for proving the Singer Conjecture (on the vanishing of the reduced –homology except in the middle dimension) in the case of where is a triangulation of . The program succeeds when . This implies the Charney–Davis Conjecture on flag triangulations of . It also implies the following special case of the Hopf–Chern Conjecture: every closed 4–manifold with a nonpositively curved, piecewise Euclidean, cubical structure has nonnegative Euler characteristic. Our methods suggest the following generalization of the Singer Conjecture.
Conjecture: If a discrete group acts properly on a contractible –manifold, then its –Betti numbers vanish for .
Davis, Michael W 1 ; Okun, Boris 2
@article{GT_2001_5_1_a1, author = {Davis, Michael W and Okun, Boris}, title = {Vanishing theorems and conjectures for the \ensuremath{\ell}2{\textendash}homology of right-angled {Coxeter} groups}, journal = {Geometry & topology}, pages = {7--74}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2001}, doi = {10.2140/gt.2001.5.7}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.7/} }
TY - JOUR AU - Davis, Michael W AU - Okun, Boris TI - Vanishing theorems and conjectures for the ℓ2–homology of right-angled Coxeter groups JO - Geometry & topology PY - 2001 SP - 7 EP - 74 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.7/ DO - 10.2140/gt.2001.5.7 ID - GT_2001_5_1_a1 ER -
%0 Journal Article %A Davis, Michael W %A Okun, Boris %T Vanishing theorems and conjectures for the ℓ2–homology of right-angled Coxeter groups %J Geometry & topology %D 2001 %P 7-74 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.7/ %R 10.2140/gt.2001.5.7 %F GT_2001_5_1_a1
Davis, Michael W; Okun, Boris. Vanishing theorems and conjectures for the ℓ2–homology of right-angled Coxeter groups. Geometry & topology, Tome 5 (2001) no. 1, pp. 7-74. doi : 10.2140/gt.2001.5.7. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.7/
[1] Euler characteristics of Coxeter groups, PL–triangulations of closed manifolds, and cohomology of subgroups of Artin groups, J. London Math. Soc. $(2)$ 61 (2000) 721
,[2] Convex polyhedra in Lobačevskiĭspaces, Mat. Sb. $($N.S.$)$ 81 (123) (1970) 445
,[3] Convex polyhedra of finite volume in Lobačevskiĭspace, Mat. Sb. $($N.S.$)$ 83 (125) (1970) 256
,[4] Elliptic operators, discrete groups and von Neumann algebras, from: "Colloque “Analyse et Topologie” en l'Honneur de Henri Cartan (Orsay, 1974)", Astérisque 32–33, Soc. Math. France (1976) 43
,[5] Van Kampen's embedding obstruction for discrete groups, Invent. Math. 150 (2002) 219
, , ,[6] Éléments de mathématique, Masson (1981) 290
,[7] Sheaf theory, Graduate Texts in Mathematics 170, Springer (1997)
,[8] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften 319, Springer (1999)
, ,[9] Surgery on simply-connected manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete 65, Springer (1972)
,[10] The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold, Pacific J. Math. 171 (1995) 117
, ,[11] Bounds on the von Neumann dimension of $L^2$–cohomology and the Gauss–Bonnet theorem for open manifolds, J. Differential Geom. 21 (1985) 1
, ,[12] $L_2$–cohomology and group cohomology, Topology 25 (1986) 189
, ,[13] On the curvature of piecewise flat spaces, Comm. Math. Phys. 92 (1984) 405
, , ,[14] On curvature and characteristic classes of a Riemann manifold, Abh. Math. Sem. Univ. Hamburg 20 (1955) 117
,[15] Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. $(2)$ 117 (1983) 293
,[16] Coxeter groups and aspherical manifolds, from: "Algebraic topology, Aarhus 1982 (Aarhus, 1982)", Lecture Notes in Math. 1051, Springer (1984) 197
,[17] Nonpositive curvature and reflection groups, from: "Handbook of geometric topology", North-Holland (2002) 373
,[18] Nonpositive curvature of blow-ups, Selecta Math. $($N.S.$)$ 4 (1998) 491
, , ,[19] Notes on nonpositively curved polyhedra, from: "Low dimensional topology (Eger, 1996/Budapest, 1998)", Bolyai Soc. Math. Stud. 8, János Bolyai Math. Soc. (1999) 11
, ,[20] de Rham–Hodge theory for $L^2$–cohomology of infinite coverings, Topology 16 (1977) 157
,[21] $L^2$ harmonic forms on rotationally symmetric Riemannian manifolds, Proc. Amer. Math. Soc. 77 (1979) 395
,[22] On the differential form spectrum of negatively curved Riemannian manifolds, Amer. J. Math. 106 (1984) 169
, ,[23] Introduction to $l_2$–methods in topology: reduced $l_2$–homology, harmonic chains, $l_2$–Betti numbers, Israel J. Math. 117 (2000) 183
,[24] Homological algebra of Novikov–Shubin invariants and Morse inequalities, Geom. Funct. Anal. 6 (1996) 628
,[25] von Neumann Betti numbers and Novikov type inequalities, Proc. Amer. Math. Soc. 128 (2000) 2819
,[26] Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[27] Kähler hyperbolicity and $L_2$–Hodge theory, J. Differential Geom. 33 (1991) 263
,[28] Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)", London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1
,[29] Topological graph theory, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley Sons (1987)
, ,[30] Complexes of groups and orbihedra, from: "Group theory from a geometrical viewpoint (Trieste, 1990)", World Sci. Publ., River Edge, NJ (1991) 504
,[31] Full Banach mean values on countable groups, Math. Scand. 7 (1959) 146
,[32] $L_2$–topological invariants of 3–manifolds, Invent. Math. 120 (1995) 15
, ,[33] $L_2$–Betti numbers of mapping tori and groups, Topology 33 (1994) 203
,[34] On the first Betti number of a constant negatively curved manifold, Ann. of Math. $(2)$ 104 (1976) 235
,[35] Hyperbolic Coxeter groups, PhD thesis, Ohio State University (1988)
,[36] Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3 fibrées sur $S^1$, from: "Bourbaki Seminar, Vol. 1979/80", Lecture Notes in Math. 842, Springer (1981) 196
,[37] A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 59 (1986) 99
,[38] Orbifolds and Seifert Fiber Spaces, (1990)
,[39] Rational Euler characteristics, Proc. Cambridge Philos. Soc. 57 (1961) 182
,Cité par Sources :