On iterated torus knots and transversal knots
Geometry & topology, Tome 5 (2001) no. 2, pp. 651-682.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A knot type is exchange reducible if an arbitrary closed n–braid representative K of K can be changed to a closed braid of minimum braid index nmin(K) by a finite sequence of braid isotopies, exchange moves and ±–destabilizations. In a preprint of Birman and Wrinkle, a transversal knot in the standard contact structure for S3 is defined to be transversally simple if it is characterized up to transversal isotopy by its topological knot type and its self-linking number. Theorem 2 in the preprint establishes that exchange reducibility implies transversally simplicity. The main result in this note, establishes that iterated torus knots are exchange reducible. It then follows as a corollary that iterated torus knots are transversally simple.

DOI : 10.2140/gt.2001.5.651
Keywords: contact structures, braids, torus knots, cabling, exchange reducibility

Menasco, William W 1

1 University at Buffalo, Buffalo, New York 14214, USA
@article{GT_2001_5_2_a5,
     author = {Menasco, William W},
     title = {On iterated torus knots and transversal knots},
     journal = {Geometry & topology},
     pages = {651--682},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2001},
     doi = {10.2140/gt.2001.5.651},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.651/}
}
TY  - JOUR
AU  - Menasco, William W
TI  - On iterated torus knots and transversal knots
JO  - Geometry & topology
PY  - 2001
SP  - 651
EP  - 682
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.651/
DO  - 10.2140/gt.2001.5.651
ID  - GT_2001_5_2_a5
ER  - 
%0 Journal Article
%A Menasco, William W
%T On iterated torus knots and transversal knots
%J Geometry & topology
%D 2001
%P 651-682
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.651/
%R 10.2140/gt.2001.5.651
%F GT_2001_5_2_a5
Menasco, William W. On iterated torus knots and transversal knots. Geometry & topology, Tome 5 (2001) no. 2, pp. 651-682. doi : 10.2140/gt.2001.5.651. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.651/

[1] J S Birman, E Finkelstein, Studying surfaces via closed braids, J. Knot Theory Ramifications 7 (1998) 267

[2] J S Birman, W W Menasco, Studying links via closed braids V: The unlink, Trans. Amer. Math. Soc. 329 (1992) 585

[3] J S Birman, W W Menasco, Studying links via closed braids IV: Composite links and split links, Invent. Math. 102 (1990) 115

[4] J S Birman, W W Menasco, Special positions for essential tori in link complements, Topology 33 (1994) 525

[5] J S Birman, W W Menasco, Studying links via closed braids III: Classifying links which are closed 3–braids, Pacific J. Math. 161 (1993) 25

[6] Y Eliashberg, Legendrian and transversal knots in tight contact 3–manifolds, from: "Topological methods in modern mathematics (Stony Brook, NY, 1991)", Publish or Perish (1993) 171

[7] J B Etnyre, Transversal torus knots, Geom. Topol. 3 (1999) 253

[8] W Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics 43, American Mathematical Society (1980)

[9] J E Los, Knots, braid index and dynamical type, Topology 33 (1994) 257

[10] D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish (1990)

[11] H Schubert, Knoten und Vollringe, Acta Math. 90 (1953) 131

Cité par Sources :