Heegaard splittings of exteriors of two bridge knots
Geometry & topology, Tome 5 (2001) no. 2, pp. 609-650.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this paper, we show that, for each non-trivial two bridge knot K and for each g 3, every genus g Heegaard splitting of the exterior E(K) of K is reducible.

DOI : 10.2140/gt.2001.5.609
Keywords: two bridge knot, Heegaard splitting

Kobayashi, Tsuyoshi 1

1 Department of Mathematics, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
@article{GT_2001_5_2_a4,
     author = {Kobayashi, Tsuyoshi},
     title = {Heegaard splittings of exteriors of two bridge knots},
     journal = {Geometry & topology},
     pages = {609--650},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2001},
     doi = {10.2140/gt.2001.5.609},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.609/}
}
TY  - JOUR
AU  - Kobayashi, Tsuyoshi
TI  - Heegaard splittings of exteriors of two bridge knots
JO  - Geometry & topology
PY  - 2001
SP  - 609
EP  - 650
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.609/
DO  - 10.2140/gt.2001.5.609
ID  - GT_2001_5_2_a4
ER  - 
%0 Journal Article
%A Kobayashi, Tsuyoshi
%T Heegaard splittings of exteriors of two bridge knots
%J Geometry & topology
%D 2001
%P 609-650
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.609/
%R 10.2140/gt.2001.5.609
%F GT_2001_5_2_a4
Kobayashi, Tsuyoshi. Heegaard splittings of exteriors of two bridge knots. Geometry & topology, Tome 5 (2001) no. 2, pp. 609-650. doi : 10.2140/gt.2001.5.609. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.609/

[1] M Boileau, J P Otal, Sur les scindements de Heegaard du tore $T^3$, J. Differential Geom. 32 (1990) 209

[2] A J Casson, C M Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275

[3] M Culler, C M Gordon, J Luecke, P B Shalen, Dehn surgery on knots, Ann. of Math. $(2)$ 125 (1987) 237

[4] H Doll, A generalized bridge number for links in 3–manifolds, Math. Ann. 294 (1992) 701

[5] C Frohman, The topological uniqueness of triply periodic minimal surfaces in $\mathbb{R}^3$, J. Differential Geom. 31 (1990) 277

[6] H Goda, M Scharlemann, A Thompson, Levelling an unknotting tunnel, Geom. Topol. 4 (2000) 243

[7] Y Hagiwara, Reidemeister–Singer distance for unknotting tunnels of a knot, Kobe J. Math. 11 (1994) 89

[8] W Haken, Some results on surfaces in 3–manifolds, from: "Studies in Modern Topology", Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.) (1968) 39

[9] D J Heath, Heegaard splittings of the Figure-8 knot complement are standard, preprint

[10] J Hempel, 3–Manifolds, Ann. of Math. Studies 86, Princeton University Press (1976)

[11] W Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics 43, American Mathematical Society (1980)

[12] P K Kim, J L Tollefson, Splitting the PL involutions of nonprime 3–manifolds, Michigan Math. J. 27 (1980) 259

[13] T Kobayashi, Classification of unknotting tunnels for two bridge knots, from: "Proceedings of the Kirbyfest (Berkeley, CA, 1998)", Geom. Topol. Monogr. 2, Geom. Topol. Publ., Coventry (1999) 259

[14] T Kobayashi, O Saeki, The Rubinstein–Scharlemann graphic of a 3–manifold as the discriminant set of a stable map, Pacific J. Math. 195 (2000) 101

[15] K Morimoto, A note on unknotting tunnels for 2–bridge knots, Bull. Fac. Eng. Takushoku Univ. 3 (1992) 219

[16] K Morimoto, Tunnel number, connected sum and meridional essential surfaces, Topology 39 (2000) 469

[17] H Rubinstein, M Scharlemann, Comparing Heegaard splittings of non-Haken 3–manifolds, Topology 35 (1996) 1005

[18] M Scharlemann, A Thompson, Heegaard splittings of $(\mathrm{surface}){\times}I$ are standard, Math. Ann. 295 (1993) 549

[19] J Schultens, Additivity of tunnel number for small knots, Comment. Math. Helv. 75 (2000) 353

[20] J Schultens, The classification of Heegaard splittings for (compact orientable surface)${\times}S^1$, Proc. London Math. Soc. $(3)$ 67 (1993) 425

[21] F Waldhausen, Heegaard-Zerlegungen der 3–Sphäre, Topology 7 (1968) 195

Cité par Sources :