Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In this paper, we show that, for each non-trivial two bridge knot and for each , every genus Heegaard splitting of the exterior of is reducible.
Kobayashi, Tsuyoshi 1
@article{GT_2001_5_2_a4, author = {Kobayashi, Tsuyoshi}, title = {Heegaard splittings of exteriors of two bridge knots}, journal = {Geometry & topology}, pages = {609--650}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2001}, doi = {10.2140/gt.2001.5.609}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.609/} }
Kobayashi, Tsuyoshi. Heegaard splittings of exteriors of two bridge knots. Geometry & topology, Tome 5 (2001) no. 2, pp. 609-650. doi : 10.2140/gt.2001.5.609. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.609/
[1] Sur les scindements de Heegaard du tore $T^3$, J. Differential Geom. 32 (1990) 209
, ,[2] Reducing Heegaard splittings, Topology Appl. 27 (1987) 275
, ,[3] Dehn surgery on knots, Ann. of Math. $(2)$ 125 (1987) 237
, , , ,[4] A generalized bridge number for links in 3–manifolds, Math. Ann. 294 (1992) 701
,[5] The topological uniqueness of triply periodic minimal surfaces in $\mathbb{R}^3$, J. Differential Geom. 31 (1990) 277
,[6] Levelling an unknotting tunnel, Geom. Topol. 4 (2000) 243
, , ,[7] Reidemeister–Singer distance for unknotting tunnels of a knot, Kobe J. Math. 11 (1994) 89
,[8] Some results on surfaces in 3–manifolds, from: "Studies in Modern Topology", Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.) (1968) 39
,[9] Heegaard splittings of the Figure-8 knot complement are standard, preprint
,[10] 3–Manifolds, Ann. of Math. Studies 86, Princeton University Press (1976)
,[11] Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics 43, American Mathematical Society (1980)
,[12] Splitting the PL involutions of nonprime 3–manifolds, Michigan Math. J. 27 (1980) 259
, ,[13] Classification of unknotting tunnels for two bridge knots, from: "Proceedings of the Kirbyfest (Berkeley, CA, 1998)", Geom. Topol. Monogr. 2, Geom. Topol. Publ., Coventry (1999) 259
,[14] The Rubinstein–Scharlemann graphic of a 3–manifold as the discriminant set of a stable map, Pacific J. Math. 195 (2000) 101
, ,[15] A note on unknotting tunnels for 2–bridge knots, Bull. Fac. Eng. Takushoku Univ. 3 (1992) 219
,[16] Tunnel number, connected sum and meridional essential surfaces, Topology 39 (2000) 469
,[17] Comparing Heegaard splittings of non-Haken 3–manifolds, Topology 35 (1996) 1005
, ,[18] Heegaard splittings of $(\mathrm{surface}){\times}I$ are standard, Math. Ann. 295 (1993) 549
, ,[19] Additivity of tunnel number for small knots, Comment. Math. Helv. 75 (2000) 353
,[20] The classification of Heegaard splittings for (compact orientable surface)${\times}S^1$, Proc. London Math. Soc. $(3)$ 67 (1993) 425
,[21] Heegaard-Zerlegungen der 3–Sphäre, Topology 7 (1968) 195
,Cité par Sources :