Lefschetz pencils and divisors in moduli space
Geometry & topology, Tome 5 (2001) no. 2, pp. 579-608.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study Lefschetz pencils on symplectic four-manifolds via the associated spheres in the moduli spaces of curves, and in particular their intersections with certain natural divisors. An invariant defined from such intersection numbers can distinguish manifolds with torsion first Chern class. We prove that pencils of large degree always give spheres which behave ‘homologically’ like rational curves; contrastingly, we give the first constructive example of a symplectic non-holomorphic Lefschetz pencil. We also prove that only finitely many values of signature or Euler characteristic are realised by manifolds admitting Lefschetz pencils of genus two curves.

DOI : 10.2140/gt.2001.5.579
Keywords: Lefschetz pencil, Lefschetz fibration, symplectic four-manifold, moduli space of curves

Smith, Ivan 1

1 New College, University of Oxford, OX1 3BN, United Kingdom
@article{GT_2001_5_2_a3,
     author = {Smith, Ivan},
     title = {Lefschetz pencils and divisors in moduli space},
     journal = {Geometry & topology},
     pages = {579--608},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2001},
     doi = {10.2140/gt.2001.5.579},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.579/}
}
TY  - JOUR
AU  - Smith, Ivan
TI  - Lefschetz pencils and divisors in moduli space
JO  - Geometry & topology
PY  - 2001
SP  - 579
EP  - 608
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.579/
DO  - 10.2140/gt.2001.5.579
ID  - GT_2001_5_2_a3
ER  - 
%0 Journal Article
%A Smith, Ivan
%T Lefschetz pencils and divisors in moduli space
%J Geometry & topology
%D 2001
%P 579-608
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.579/
%R 10.2140/gt.2001.5.579
%F GT_2001_5_2_a3
Smith, Ivan. Lefschetz pencils and divisors in moduli space. Geometry & topology, Tome 5 (2001) no. 2, pp. 579-608. doi : 10.2140/gt.2001.5.579. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.579/

[1] E Arbarello, M Cornalba, The Picard groups of the moduli spaces of curves, Topology 26 (1987) 153

[2] D Auroux, Symplectic 4–manifolds as branched coverings of $\mathbb{CP}^2$, Invent. Math. 139 (2000) 551

[3] D Auroux, L Katzarkov, Branched coverings of $\mathbb{C}\mathrm{P}^2$ and invariants of symplectic 4–manifolds, Invent. Math. 142 (2000) 631

[4] W Barth, C Peters, A Van De Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 4, Springer (1984)

[5] S Donaldson, I Smith, Lefschetz pencils and the canonical class for symplectic four-manifolds, Topology 42 (2003) 743

[6] S K Donaldson, Lefschetz pencils on symplectic manifolds, J. Differential Geom. 53 (1999) 205

[7] H Endo, Meyer's signature cocycle and hyperelliptic fibrations, Math. Ann. 316 (2000) 237

[8] R Fintushe, R Stern, Counterexamples to a symplectic analogue of a theorem of Arakelov and Parsin, preprint (1999)

[9] R E Gompf, The topology of symplectic manifolds, Turkish J. Math. 25 (2001) 43

[10] J Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983) 221

[11] J Harris, I Morrison, Moduli of curves, Graduate Texts in Mathematics 187, Springer (1998)

[12] A K Liu, Some new applications of general wall crossing formula, Gompf's conjecture and its applications, Math. Res. Lett. 3 (1996) 569

[13] F Luo, A presentation of the mapping class groups, Math. Res. Lett. 4 (1997) 735

[14] Y Matsumoto, Lefschetz fibrations of genus two – a topological approach, from: "Topology and Teichmüller spaces (Katinkulta, 1995)", World Sci. Publ., River Edge, NJ (1996) 123

[15] D Mcduff, D Salamon, A survey of symplectic 4–manifolds with $b^{+}=1$, Turkish J. Math. 20 (1996) 47

[16] J W Morgan, Z Szabó, Homotopy $K3$ surfaces and mod 2 Seiberg–Witten invariants, Math. Res. Lett. 4 (1997) 17

[17] B Ozbagci, Signatures of Lefschetz fibrations, Pacific J. Math. 202 (2002) 99

[18] U Persson, Chern invariants of surfaces of general type, Compositio Math. 43 (1981) 3

[19] B Siebert, G Tian, On hyperelliptic $C^{\infty}$–Lefschetz fibrations of four-manifolds, Commun. Contemp. Math. 1 (1999) 255

[20] I Smith, Gauge theory and symplectic linear systems, in preparation

[21] I Smith, Geometric monodromy and the hyperbolic disc, Q. J. Math. 52 (2001) 217

[22] I Smith, Serre-Taubes duality for pseudoholomorphic curves, Topology 42 (2003) 931

[23] I Smith, Symplectic geometry of Lefschetz fibrations, DPhil thesis, University of Oxford (1998)

[24] I Smith, Lefschetz fibrations and the Hodge bundle, Geom. Topol. 3 (1999) 211

[25] A I Stipsicz, On the number of vanishing cycles in Lefschetz fibrations, Math. Res. Lett. 6 (1999) 449

[26] A I Stipsicz, Indecomposability of certain Lefschetz fibrations, Proc. Amer. Math. Soc. 129 (2001) 1499

[27] C H Taubes, The Seiberg-Witten and Gromov invariants, Math. Res. Lett. 2 (1995) 221

Cité par Sources :