Homology surgery and invariants of 3–manifolds
Geometry & topology, Tome 5 (2001) no. 2, pp. 551-578.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce a homology surgery problem in dimension 3 which has the property that the vanishing of its algebraic obstruction leads to a canonical class of π–algebraically-split links in 3–manifolds with fundamental group π. Using this class of links, we define a theory of finite type invariants of 3–manifolds in such a way that invariants of degree 0 are precisely those of conventional algebraic topology and surgery theory. When finite type invariants are reformulated in terms of clovers, we deduce upper bounds for the number of invariants in terms of π–decorated trivalent graphs. We also consider an associated notion of surgery equivalence of π–algebraically split links and prove a classification theorem using a generalization of Milnor’s μ̄–invariants to this class of links.

DOI : 10.2140/gt.2001.5.551
Keywords: homology surgery, finite type invariants, 3–manifolds, clovers

Garoufalidis, Stavros 1 ; Levine, Jerome 2

1 School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332-0160, USA
2 Department of Mathematics, Brandeis University, Waltham, Massachusetts 02254-9110, USA
@article{GT_2001_5_2_a2,
     author = {Garoufalidis, Stavros and Levine, Jerome},
     title = {Homology surgery and invariants of 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {551--578},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2001},
     doi = {10.2140/gt.2001.5.551},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.551/}
}
TY  - JOUR
AU  - Garoufalidis, Stavros
AU  - Levine, Jerome
TI  - Homology surgery and invariants of 3–manifolds
JO  - Geometry & topology
PY  - 2001
SP  - 551
EP  - 578
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.551/
DO  - 10.2140/gt.2001.5.551
ID  - GT_2001_5_2_a2
ER  - 
%0 Journal Article
%A Garoufalidis, Stavros
%A Levine, Jerome
%T Homology surgery and invariants of 3–manifolds
%J Geometry & topology
%D 2001
%P 551-578
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.551/
%R 10.2140/gt.2001.5.551
%F GT_2001_5_2_a2
Garoufalidis, Stavros; Levine, Jerome. Homology surgery and invariants of 3–manifolds. Geometry & topology, Tome 5 (2001) no. 2, pp. 551-578. doi : 10.2140/gt.2001.5.551. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.551/

[1] R Fenn, C Rourke, On Kirby's calculus of links, Topology 18 (1979) 1

[2] M H Freedman, F Quinn, Topology of 4–manifolds, Princeton Mathematical Series 39, Princeton University Press (1990)

[3] S Garoufalidis, M Goussarov, M Polyak, Calculus of clovers and finite type invariants of 3–manifolds, Geom. Topol. 5 (2001) 75

[4] S Garoufalidis, J Levine, On finite type 3–manifold invariants II, Math. Ann. 306 (1996) 691

[5] S Garoufalidis, T Ohtsuki, On finite type 3–manifold invariants III: Manifold weight systems, Topology 37 (1998) 227

[6] M Goussarov, Finite type invariants and $n$–equivalence of 3–manifolds, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 517

[7] K Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1

[8] R C Kirby, L R Taylor, A survey of 4–manifolds through the eyes of surgery, from: "Surveys on surgery theory, Vol. 2", Ann. of Math. Stud. 149, Princeton Univ. Press (2001) 387

[9] J P Levine, Surgery on links and the $\overline\mu$–invariants, Topology 26 (1987) 45

[10] T T Q Le, J Murakami, T Ohtsuki, On a universal perturbative invariant of 3–manifolds, Topology 37 (1998) 539

[11] S V Matveev, Generalized surgeries of three-dimensional manifolds and representations of homology spheres, Mat. Zametki 42 (1987) 268, 345

[12] H Murakami, Y Nakanishi, On a certain move generating link-homology, Math. Ann. 284 (1989) 75

[13] T Ohtsuki, Finite type invariants of integral homology 3–spheres, J. Knot Theory Ramifications 5 (1996) 101

[14] A Ranicki, The algebraic theory of surgery I: Foundations, Proc. London Math. Soc. $(3)$ 40 (1980) 87

[15] C T C Wall, Surgery on compact manifolds, London Mathematical Society Monographs 1, Academic Press (1970)

Cité par Sources :