The Seiberg–Witten invariants and 4–manifolds with essential tori
Geometry & topology, Tome 5 (2001) no. 2, pp. 441-519.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A formula is given for the Seiberg–Witten invariants of a 4–manifold that is cut along certain kinds of 3–dimensional tori. The formula involves a Seiberg–Witten invariant for each of the resulting pieces.

DOI : 10.2140/gt.2001.5.441
Keywords: Seiberg–Witten invariants, gluing theorems

Taubes, Clifford Henry 1

1 Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, USA
@article{GT_2001_5_2_a0,
     author = {Taubes, Clifford Henry},
     title = {The {Seiberg{\textendash}Witten} invariants and 4{\textendash}manifolds with essential tori},
     journal = {Geometry & topology},
     pages = {441--519},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2001},
     doi = {10.2140/gt.2001.5.441},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.441/}
}
TY  - JOUR
AU  - Taubes, Clifford Henry
TI  - The Seiberg–Witten invariants and 4–manifolds with essential tori
JO  - Geometry & topology
PY  - 2001
SP  - 441
EP  - 519
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.441/
DO  - 10.2140/gt.2001.5.441
ID  - GT_2001_5_2_a0
ER  - 
%0 Journal Article
%A Taubes, Clifford Henry
%T The Seiberg–Witten invariants and 4–manifolds with essential tori
%J Geometry & topology
%D 2001
%P 441-519
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.441/
%R 10.2140/gt.2001.5.441
%F GT_2001_5_2_a0
Taubes, Clifford Henry. The Seiberg–Witten invariants and 4–manifolds with essential tori. Geometry & topology, Tome 5 (2001) no. 2, pp. 441-519. doi : 10.2140/gt.2001.5.441. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.441/

[1] M F Atiyah, New topological invariants of 3 and 4 dimensional manifolds, Proc. Symp. Pure Math. 48 (1988) 285

[2] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43

[3] N Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. $(9)$ 36 (1957) 235

[4] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1990)

[5] R Fintushel, R J Stern, Knots, links, and 4–manifolds, Invent. Math. 134 (1998) 363

[6] R Fintushel, R J Stern, Constructions of smooth 4-manifolds, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)" (1998) 443

[7] A Jaffe, C Taubes, Vortices and monopoles, Progress in Physics 2, Birkhäuser (1980)

[8] D Kotschick, P B Kronheimer, T S Mrowka, in preparation,

[9] P B Kronheimer, T S Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994) 797

[10] Y Lim, Seiberg–Witten invariants for 3–manifolds and product formulae, preprint

[11] J W Morgan, The Seiberg–Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes 44, Princeton University Press (1996)

[12] C T Mcmullen, C H Taubes, 4–manifolds with inequivalent symplectic forms and 3–manifolds with inequivalent fibrations, Math. Res. Lett. 6 (1999) 681

[13] J W Morgan, T S Mrowka, Z Szabó, Product formulas along $T^3$ for Seiberg–Witten invariants, Math. Res. Lett. 4 (1997) 915

[14] J W Morgan, Z Szabó, Embedded tori in four-manifolds, Topology 38 (1999) 479

[15] J W Morgan, Z Szabó, C H Taubes, A product formula for the Seiberg–Witten invariants and the generalized Thom conjecture, J. Differential Geom. 44 (1996) 706

[16] G Meng, C H Taubes, $\underline{\mathrm{SW}}=$ Milnor torsion, Math. Res. Lett. 3 (1996) 661

[17] P Ozsváth, Z Szabó, The symplectic Thom conjecture, Ann. of Math. $(2)$ 151 (2000) 93

[18] C H Taubes, $L^2$ moduli spaces on 4–manifolds with cylindrical ends, Monographs in Geometry and Topology, I, International Press (1993)

[19] C H Taubes, $\mathrm{SW}{\Rightarrow}\mathrm{Gr}$: from the Seiberg–Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996) 845

[20] C H Taubes, $\mathrm{GR}=\mathrm{SW}$: counting curves and connections, J. Differential Geom. 52 (1999) 453

[21] K K Uhlenbeck, Connections with $L^{p}$ bounds on curvature, Comm. Math. Phys. 83 (1982) 31

[22] E Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769

[23] E Witten, Topological quantum field theory, Comm. Math. Phys. 117 (1988) 353

Cité par Sources :