Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A formula is given for the Seiberg–Witten invariants of a 4–manifold that is cut along certain kinds of 3–dimensional tori. The formula involves a Seiberg–Witten invariant for each of the resulting pieces.
Taubes, Clifford Henry 1
@article{GT_2001_5_2_a0, author = {Taubes, Clifford Henry}, title = {The {Seiberg{\textendash}Witten} invariants and 4{\textendash}manifolds with essential tori}, journal = {Geometry & topology}, pages = {441--519}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2001}, doi = {10.2140/gt.2001.5.441}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.441/} }
TY - JOUR AU - Taubes, Clifford Henry TI - The Seiberg–Witten invariants and 4–manifolds with essential tori JO - Geometry & topology PY - 2001 SP - 441 EP - 519 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.441/ DO - 10.2140/gt.2001.5.441 ID - GT_2001_5_2_a0 ER -
Taubes, Clifford Henry. The Seiberg–Witten invariants and 4–manifolds with essential tori. Geometry & topology, Tome 5 (2001) no. 2, pp. 441-519. doi : 10.2140/gt.2001.5.441. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.441/
[1] New topological invariants of 3 and 4 dimensional manifolds, Proc. Symp. Pure Math. 48 (1988) 285
,[2] Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43
, , ,[3] A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. $(9)$ 36 (1957) 235
,[4] The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1990)
, ,[5] Knots, links, and 4–manifolds, Invent. Math. 134 (1998) 363
, ,[6] Constructions of smooth 4-manifolds, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)" (1998) 443
, ,[7] Vortices and monopoles, Progress in Physics 2, Birkhäuser (1980)
, ,[8] in preparation,
, , ,[9] The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994) 797
, ,[10] Seiberg–Witten invariants for 3–manifolds and product formulae, preprint
,[11] The Seiberg–Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes 44, Princeton University Press (1996)
,[12] 4–manifolds with inequivalent symplectic forms and 3–manifolds with inequivalent fibrations, Math. Res. Lett. 6 (1999) 681
, ,[13] Product formulas along $T^3$ for Seiberg–Witten invariants, Math. Res. Lett. 4 (1997) 915
, , ,[14] Embedded tori in four-manifolds, Topology 38 (1999) 479
, ,[15] A product formula for the Seiberg–Witten invariants and the generalized Thom conjecture, J. Differential Geom. 44 (1996) 706
, , ,[16] $\underline{\mathrm{SW}}=$ Milnor torsion, Math. Res. Lett. 3 (1996) 661
, ,[17] The symplectic Thom conjecture, Ann. of Math. $(2)$ 151 (2000) 93
, ,[18] $L^2$ moduli spaces on 4–manifolds with cylindrical ends, Monographs in Geometry and Topology, I, International Press (1993)
,[19] $\mathrm{SW}{\Rightarrow}\mathrm{Gr}$: from the Seiberg–Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996) 845
,[20] $\mathrm{GR}=\mathrm{SW}$: counting curves and connections, J. Differential Geom. 52 (1999) 453
,[21] Connections with $L^{p}$ bounds on curvature, Comm. Math. Phys. 83 (1982) 31
,[22] Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769
,[23] Topological quantum field theory, Comm. Math. Phys. 117 (1988) 353
,Cité par Sources :