Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This is the second of three papers about the Compression Theorem. We give proofs of Gromov’s theorem on directed embeddings and of the Normal Deformation Theorem (a general version of the Compression Theorem).
Rourke, Colin 1 ; Sanderson, Brian 1
@article{GT_2001_5_1_a14, author = {Rourke, Colin and Sanderson, Brian}, title = {The compression theorem {II:} directed embeddings}, journal = {Geometry & topology}, pages = {431--440}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2001}, doi = {10.2140/gt.2001.5.431}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.431/} }
TY - JOUR AU - Rourke, Colin AU - Sanderson, Brian TI - The compression theorem II: directed embeddings JO - Geometry & topology PY - 2001 SP - 431 EP - 440 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.431/ DO - 10.2140/gt.2001.5.431 ID - GT_2001_5_1_a14 ER -
Rourke, Colin; Sanderson, Brian. The compression theorem II: directed embeddings. Geometry & topology, Tome 5 (2001) no. 1, pp. 431-440. doi : 10.2140/gt.2001.5.431. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.431/
[1] Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 9, Springer (1986)
,[2] On $C^1$–isometric imbeddings I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 58 (1955) 545, 683
,[3] The compression theorem I, Geom. Topol. 5 (2001) 399
, ,[4] The compression theorem III: Applications, Algebr. Geom. Topol. 3 (2003) 857
, ,Cité par Sources :