Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This the first of a set of three papers about the Compression Theorem: if is embedded in with a normal vector field and if , then the given vector field can be straightened (ie, made parallel to the given direction) by an isotopy of and normal field in .
The theorem can be deduced from Gromov’s theorem on directed embeddings and is implicit in the preceeding discussion. Here we give a direct proof that leads to an explicit description of the finishing embedding.
In the second paper in the series we give a proof in the spirit of Gromov’s proof and in the third part we give applications.
Rourke, Colin 1 ; Sanderson, Brian 1
@article{GT_2001_5_1_a13, author = {Rourke, Colin and Sanderson, Brian}, title = {The compression theorem {I}}, journal = {Geometry & topology}, pages = {399--429}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2001}, doi = {10.2140/gt.2001.5.399}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.399/} }
Rourke, Colin; Sanderson, Brian. The compression theorem I. Geometry & topology, Tome 5 (2001) no. 1, pp. 399-429. doi : 10.2140/gt.2001.5.399. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.399/
[1] Singularities of differentiable maps, Inst. Hautes Études Sci. Publ. Math. (1967) 21
,[2] Some problems on homotopy theory manifolds and transformation groups, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2", Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 251
, ,[3] Wrinkling of smooth mappings II: Wrinkling of embeddings and K Igusa's theorem, Topology 39 (2000) 711
, ,[4] James bundles, Proc. London Math. Soc. $(3)$ 89 (2004) 217
, , ,[5] Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 9, Springer (1986)
,[6] Differential topology, Prentice-Hall (1974)
, ,[7] Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959) 242
,[8] Reduced product spaces, Ann. of Math. $(2)$ 62 (1955) 170
,[9] Geometric interpretations of the generalized Hopf invariant, Math. Scand. 41 (1977) 199
, ,[10] The geometry of iterated loop spaces, Lecture Notes in Mathematics 271, Springer (1972)
,[11] Generic projections, Ann. of Math. $(2)$ 98 (1973) 226
,[12] Iterated loop spaces, Ann. of Math. $(2)$ 84 (1966) 386
,[13] Turning a surface inside out, Scientific American 214 (1966) 112
,[14] The compression theorem II: Directed embeddings, Geom. Topol. 5 (2001) 431
, ,[15] The compression theorem III: Applications, Algebr. Geom. Topol. 3 (2003) 857
, ,[16] Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973) 213
,[17] The classification of immersions of spheres in Euclidean spaces, Ann. of Math. $(2)$ 69 (1959) 327
,[18] Loop spaces and the compression theorem, Proc. Amer. Math. Soc. 128 (2000) 3741
,[19] Rack spaces and loop spaces, J. Knot Theory Ramifications 8 (1999) 99
,Cité par Sources :