The compression theorem I
Geometry & topology, Tome 5 (2001) no. 1, pp. 399-429.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This the first of a set of three papers about the Compression Theorem: if Mm is embedded in Qq × with a normal vector field and if q m 1, then the given vector field can be straightened (ie, made parallel to the given direction) by an isotopy of M and normal field in Q × .

The theorem can be deduced from Gromov’s theorem on directed embeddings and is implicit in the preceeding discussion. Here we give a direct proof that leads to an explicit description of the finishing embedding.

In the second paper in the series we give a proof in the spirit of Gromov’s proof and in the third part we give applications.

DOI : 10.2140/gt.2001.5.399
Keywords: compression, embedding, isotopy, immersion, straightening, vector field

Rourke, Colin 1 ; Sanderson, Brian 1

1 Mathematics Institute, University of Warwick, Coventry, CV5 7AL, United Kingdom
@article{GT_2001_5_1_a13,
     author = {Rourke, Colin and Sanderson, Brian},
     title = {The compression theorem {I}},
     journal = {Geometry & topology},
     pages = {399--429},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2001},
     doi = {10.2140/gt.2001.5.399},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.399/}
}
TY  - JOUR
AU  - Rourke, Colin
AU  - Sanderson, Brian
TI  - The compression theorem I
JO  - Geometry & topology
PY  - 2001
SP  - 399
EP  - 429
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.399/
DO  - 10.2140/gt.2001.5.399
ID  - GT_2001_5_1_a13
ER  - 
%0 Journal Article
%A Rourke, Colin
%A Sanderson, Brian
%T The compression theorem I
%J Geometry & topology
%D 2001
%P 399-429
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.399/
%R 10.2140/gt.2001.5.399
%F GT_2001_5_1_a13
Rourke, Colin; Sanderson, Brian. The compression theorem I. Geometry & topology, Tome 5 (2001) no. 1, pp. 399-429. doi : 10.2140/gt.2001.5.399. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.399/

[1] J M Boardman, Singularities of differentiable maps, Inst. Hautes Études Sci. Publ. Math. (1967) 21

[2] W Browder, W C Hsiang, Some problems on homotopy theory manifolds and transformation groups, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2", Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 251

[3] Y M Eliashberg, N M Mishachev, Wrinkling of smooth mappings II: Wrinkling of embeddings and K Igusa's theorem, Topology 39 (2000) 711

[4] R Fenn, C Rourke, B Sanderson, James bundles, Proc. London Math. Soc. $(3)$ 89 (2004) 217

[5] M Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 9, Springer (1986)

[6] V Guillemin, A Pollack, Differential topology, Prentice-Hall (1974)

[7] M W Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959) 242

[8] I M James, Reduced product spaces, Ann. of Math. $(2)$ 62 (1955) 170

[9] U Koschorke, B Sanderson, Geometric interpretations of the generalized Hopf invariant, Math. Scand. 41 (1977) 199

[10] J P May, The geometry of iterated loop spaces, Lecture Notes in Mathematics 271, Springer (1972)

[11] J N Mather, Generic projections, Ann. of Math. $(2)$ 98 (1973) 226

[12] R J Milgram, Iterated loop spaces, Ann. of Math. $(2)$ 84 (1966) 386

[13] A Philips, Turning a surface inside out, Scientific American 214 (1966) 112

[14] C Rourke, B Sanderson, The compression theorem II: Directed embeddings, Geom. Topol. 5 (2001) 431

[15] C Rourke, B Sanderson, The compression theorem III: Applications, Algebr. Geom. Topol. 3 (2003) 857

[16] G Segal, Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973) 213

[17] S Smale, The classification of immersions of spheres in Euclidean spaces, Ann. of Math. $(2)$ 69 (1959) 327

[18] B Wiest, Loop spaces and the compression theorem, Proc. Amer. Math. Soc. 128 (2000) 3741

[19] B Wiest, Rack spaces and loop spaces, J. Knot Theory Ramifications 8 (1999) 99

Cité par Sources :