Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a triangulation of containing a link in its 1–skeleton. We give an explicit lower bound for the number of tetrahedra of in terms of the bridge number of . Our proof is based on the theory of almost normal surfaces.
King, Simon A 1
@article{GT_2001_5_1_a12, author = {King, Simon A}, title = {The size of triangulations supporting a given link}, journal = {Geometry & topology}, pages = {369--398}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2001}, doi = {10.2140/gt.2001.5.369}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.369/} }
King, Simon A. The size of triangulations supporting a given link. Geometry & topology, Tome 5 (2001) no. 1, pp. 369-398. doi : 10.2140/gt.2001.5.369. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.369/
[1] Knots and shellable cell partitionings of $S^3$, Illinois J. Math. 38 (1994) 347
,[2] Knots, de Gruyter Studies in Mathematics 5, Walter de Gruyter Co. (1985)
, ,[3] Non-constructible complexes and the bridge index, European J. Combin. 22 (2001) 475
, ,[4] Zur Grundlegung der kombinatorischen Topologie, Abh. Math. Sem. Hamb. Univ. 3 (1924) 60
,[5] Foliations and the topology of 3-manifolds III, J. Differential Geom. 26 (1987) 479
,[6] Non-simplicially collapsible triangulations of $I^n$, Proc. Cambridge Philos. Soc. 64 (1968) 31
,[7] Decompositions of simplicial balls and spheres with knots consisting of few edges, Math. Z. 235 (2000) 159
, ,[8] Über das Homöomorphieproblem der 3–Mannigfaltigkeiten I, Math. Z. 80 (1962) 89
,[9] Some results on surfaces in 3–manifolds, from: "Studies in Modern Topology", Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.) (1968) 39
,[10] The number of Reidemeister moves needed for unknotting, J. Amer. Math. Soc. 14 (2001) 399
, ,[11] The classification of knots and 3–dimensional spaces, Oxford Science Publications, The Clarendon Press Oxford University Press (1992)
,[12] The size of triangulations supporting a given link, Geom. Topol. 5 (2001) 369
,[13] How to make a triangulation of $S^3$ polytopal, Trans. Amer. Math. Soc. 356 (2004) 4519
,[14] Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jahresber. Deut. Math. Ver. 38248
,[15] Unshellable triangulations of spheres, European J. Combin. 12 (1991) 527
,[16] Algorithms for the recognition of the three-dimensional sphere (after A Thompson), Mat. Sb. 186 (1995) 69
,[17] On the recognition problem for Haken 3–manifolds, from: "Proceedings of the Workshop on Differential Geometry and Topology (Palermo, 1996)" (1997) 131
,[18] Simplifying triangulations of $S^3$, Pacific J. Math. 208 (2003) 291
,[19] Polyhedral minimal surfaces, Heegaard splittings and decision problems for 3–dimensional manifolds, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 1
,[20] Thin position for 3–manifolds, from: "Geometric topology (Haifa, 1992)", Contemp. Math. 164, Amer. Math. Soc. (1994) 231
, ,[21] Theory of linear and integer programming, Wiley-Interscience Series in Discrete Mathematics, John Wiley Sons Ltd. (1986)
,[22] Thin position and the recognition problem for $S^3$, Math. Res. Lett. 1 (1994) 613
,[23] Algorithmic recognition of 3–manifolds, Bull. Amer. Math. Soc. $($N.S.$)$ 35 (1998) 57
,Cité par Sources :