Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
It is shown that with finitely many exceptions, the fundamental group obtained by Dehn surgery on a one cusped hyperbolic 3–manifold contains the fundamental group of a closed surface.
Cooper, Daryl 1 ; Long, Darren D 1
@article{GT_2001_5_1_a11, author = {Cooper, Daryl and Long, Darren D}, title = {Some surface subgroups survive surgery}, journal = {Geometry & topology}, pages = {347--367}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2001}, doi = {10.2140/gt.2001.5.347}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.347/} }
Cooper, Daryl; Long, Darren D. Some surface subgroups survive surgery. Geometry & topology, Tome 5 (2001) no. 1, pp. 347-367. doi : 10.2140/gt.2001.5.347. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.347/
[1] Bouts des variétés hyperboliques de dimension 3, Ann. of Math. $(2)$ 124 (1986) 71
,[2] , The Smith conjecture, Pure and Applied Mathematics 112, Academic Press (1984)
[3] Spherical space forms and Dehn filling, Topology 35 (1996) 809
, ,[4] Notes on notes of Thurston, from: "Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 3
, , ,[5] Virtually Haken Dehn-filling, J. Differential Geom. 52 (1999) 173
, ,[6] Essential closed surfaces in bounded 3–manifolds, J. Amer. Math. Soc. 10 (1997) 553
, , ,[7] Dehn surgery on knots, Ann. of Math. $(2)$ 125 (1987) 237
, , , ,[8] Riemannian geometry, Mathematics: Theory Applications, Birkhäuser (1992)
,[9] Quasi-Fuchsian Seifert surfaces, Math. Z. 228 (1998) 221
,[10] 3–Manifolds, Ann. of Math. Studies 86, Princeton University Press (1976)
,[11] Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics 43, American Mathematical Society (1980)
,[12] Immersed essential surfaces in hyperbolic 3–manifolds, Comm. Anal. Geom. 10 (2002) 275
,[13] Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series 35, Princeton University Press (1997)
,Cité par Sources :