Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give a simple and explicit presentation of the –equivariant complex cobordism ring, as an algebra over the nonequivariant complex cobordism ring.
Strickland, N P 1
@article{GT_2001_5_1_a10, author = {Strickland, N P}, title = {Complex cobordism of involutions}, journal = {Geometry & topology}, pages = {335--345}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2001}, doi = {10.2140/gt.2001.5.335}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.335/} }
Strickland, N P. Complex cobordism of involutions. Geometry & topology, Tome 5 (2001) no. 1, pp. 335-345. doi : 10.2140/gt.2001.5.335. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.335/
[1] Generalized Tate cohomology, Mem. Amer. Math. Soc. 113 (1995)
, ,[2] The $\mathbb{Z}/p$–equivariant complex cobordism ring, from: "Homotopy invariant algebraic structures (Baltimore, MD, 1998)", Contemp. Math. 239, Amer. Math. Soc. (1999) 217
,[3] Equivariant stable homotopy theory, Lecture Notes in Mathematics 1213, Springer (1986)
, , , ,[4] Computations of complex equivariant bordism rings, Amer. J. Math. 123 (2001) 577
,Cité par Sources :