Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a compact Stein surface with boundary. We show that admits infinitely many pairwise nonequivalent positive allowable Lefschetz fibrations over with bounded fibers.
Akbulut, Selman 1 ; Özbağcı, Burak 1
@article{GT_2001_5_1_a9, author = {Akbulut, Selman and \"Ozba\u{g}c{\i}, Burak}, title = {Lefschetz fibrations on compact {Stein} surfaces}, journal = {Geometry & topology}, pages = {319--334}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2001}, doi = {10.2140/gt.2001.5.319}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.319/} }
Akbulut, Selman; Özbağcı, Burak. Lefschetz fibrations on compact Stein surfaces. Geometry & topology, Tome 5 (2001) no. 1, pp. 319-334. doi : 10.2140/gt.2001.5.319. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.319/
[1] A convex decomposition theorem for 4–manifolds, Internat. Math. Res. Notices (1998) 371
, ,[2] On the topology of compact Stein surfaces, Int. Math. Res. Not. (2002) 769
, ,[3] Topological characterization of Stein manifolds of dimension $\gt 2$, Internat. J. Math. 1 (1990) 29
,[4] Detecting fibred links in $S^3$, Comment. Math. Helv. 61 (1986) 519
,[5] Handlebody construction of Stein surfaces, Ann. of Math. $(2)$ 148 (1998) 619
,[6] 4–manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999)
, ,[7] How to construct all fibered knots and links, Topology 21 (1982) 263
,[8] On the classification of tight contact structures I, Geom. Topol. 4 (2000) 309
,[9] On the handlebody decomposition associated to a Lefschetz fibration, Pacific J. Math. 89 (1980) 89
,[10] Compact Stein surfaces with boundary as branched covers of $B^4$, Invent. Math. 143 (2001) 325
, ,[11] Torus knots in the complements of links and surfaces, Michigan Math. J. 27 (1980) 39
,[12] Quasipositive plumbing (constructions of quasipositive knots and links V), Proc. Amer. Math. Soc. 126 (1998) 257
,[13] Constructions of quasipositive knots and links III: A characterization of quasipositive Seifert surfaces, Topology 31 (1992) 231
,[14] Quasipositive annuli (Constructions of quasipositive knots and links IV), J. Knot Theory Ramifications 1 (1992) 451
,[15] An obstruction to sliceness via contact geometry and “classical” gauge theory, Invent. Math. 119 (1995) 155
,[16] Constructions of fibred knots and links, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2", Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 55
,[17] Convex contact structures and fibered links in 3–manifolds, Internat. Math. Res. Notices (2000) 441
,Cité par Sources :