Lefschetz fibrations on compact Stein surfaces
Geometry & topology, Tome 5 (2001) no. 1, pp. 319-334.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let M be a compact Stein surface with boundary. We show that M admits infinitely many pairwise nonequivalent positive allowable Lefschetz fibrations over D2 with bounded fibers.

DOI : 10.2140/gt.2001.5.319
Keywords: Lefschetz fibration, Stein surface, open book decomposition

Akbulut, Selman 1 ; Özbağcı, Burak 1

1 Department of Mathematics, Michigan State University, Michigan 48824, USA
@article{GT_2001_5_1_a9,
     author = {Akbulut, Selman and \"Ozba\u{g}c{\i}, Burak},
     title = {Lefschetz fibrations on compact {Stein} surfaces},
     journal = {Geometry & topology},
     pages = {319--334},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2001},
     doi = {10.2140/gt.2001.5.319},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.319/}
}
TY  - JOUR
AU  - Akbulut, Selman
AU  - Özbağcı, Burak
TI  - Lefschetz fibrations on compact Stein surfaces
JO  - Geometry & topology
PY  - 2001
SP  - 319
EP  - 334
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.319/
DO  - 10.2140/gt.2001.5.319
ID  - GT_2001_5_1_a9
ER  - 
%0 Journal Article
%A Akbulut, Selman
%A Özbağcı, Burak
%T Lefschetz fibrations on compact Stein surfaces
%J Geometry & topology
%D 2001
%P 319-334
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.319/
%R 10.2140/gt.2001.5.319
%F GT_2001_5_1_a9
Akbulut, Selman; Özbağcı, Burak. Lefschetz fibrations on compact Stein surfaces. Geometry & topology, Tome 5 (2001) no. 1, pp. 319-334. doi : 10.2140/gt.2001.5.319. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.319/

[1] S Akbulut, R Matveyev, A convex decomposition theorem for 4–manifolds, Internat. Math. Res. Notices (1998) 371

[2] S Akbulut, B Ozbagci, On the topology of compact Stein surfaces, Int. Math. Res. Not. (2002) 769

[3] Y Eliashberg, Topological characterization of Stein manifolds of dimension $\gt 2$, Internat. J. Math. 1 (1990) 29

[4] D Gabai, Detecting fibred links in $S^3$, Comment. Math. Helv. 61 (1986) 519

[5] R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. $(2)$ 148 (1998) 619

[6] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999)

[7] J Harer, How to construct all fibered knots and links, Topology 21 (1982) 263

[8] K Honda, On the classification of tight contact structures I, Geom. Topol. 4 (2000) 309

[9] A Kas, On the handlebody decomposition associated to a Lefschetz fibration, Pacific J. Math. 89 (1980) 89

[10] A Loi, R Piergallini, Compact Stein surfaces with boundary as branched covers of $B^4$, Invent. Math. 143 (2001) 325

[11] H C Lyon, Torus knots in the complements of links and surfaces, Michigan Math. J. 27 (1980) 39

[12] L Rudolph, Quasipositive plumbing (constructions of quasipositive knots and links V), Proc. Amer. Math. Soc. 126 (1998) 257

[13] L Rudolph, Constructions of quasipositive knots and links III: A characterization of quasipositive Seifert surfaces, Topology 31 (1992) 231

[14] L Rudolph, Quasipositive annuli (Constructions of quasipositive knots and links IV), J. Knot Theory Ramifications 1 (1992) 451

[15] L Rudolph, An obstruction to sliceness via contact geometry and “classical” gauge theory, Invent. Math. 119 (1995) 155

[16] J R Stallings, Constructions of fibred knots and links, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2", Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 55

[17] I Torisu, Convex contact structures and fibered links in 3–manifolds, Internat. Math. Res. Notices (2000) 441

Cité par Sources :