Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The Gopakumar–Vafa integrality conjecture is defined and studied for the local geometry of a super-rigid curve in a Calabi–Yau 3–fold. The integrality predicted in Gromov–Witten theory by the Gopakumar–Vafa BPS count is verified in a natural series of cases in this local geometry. The method involves Gromov–Witten computations, Möbius inversion, and a combinatorial analysis of the numbers of étale covers of a curve.
Bryan, Jim 1 ; Pandharipande, Rahul 2
@article{GT_2001_5_1_a8, author = {Bryan, Jim and Pandharipande, Rahul}, title = {BPS states of curves in {Calabi{\textendash}Yau} 3{\textendash}folds}, journal = {Geometry & topology}, pages = {287--318}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2001}, doi = {10.2140/gt.2001.5.287}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.287/} }
Bryan, Jim; Pandharipande, Rahul. BPS states of curves in Calabi–Yau 3–folds. Geometry & topology, Tome 5 (2001) no. 1, pp. 287-318. doi : 10.2140/gt.2001.5.287. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.287/
[1] Faisceaux pervers, from: "Analysis and topology on singular spaces I (Luminy, 1981)", Astérisque 100, Soc. Math. France (1982) 5
, , ,[2] Evidence for a conjecture of Pandharipande, Turkish J. Math. 26 (2002) 69
,[3] Multiple cover formulas for Gromov–Witten invariants and BPS states, from: "Proceedings of the Workshop “Algebraic Geometry and Integrable Systems related to String Theory” (Kyoto, 2000)" (2001) 144
,[4] Multiple covers and the integrality conjecture for rational curves in Calabi–Yau threefolds, J. Algebraic Geom. 10 (2001) 549
, , ,[5] The enumerative geometry of $K3$ surfaces and modular forms, J. Amer. Math. Soc. 13 (2000) 371
, ,[6] Hodge integrals and Gromov–Witten theory, Invent. Math. 139 (2000) 173
, ,[7] Stable maps and branch divisors, Compositio Math. 130 (2002) 345
, ,[8] M–theory and topological strings II, (1998)
, ,[9] Table of integrals, series, and products, Academic Press (1996)
, ,[10] Slopes of effective divisors on the moduli space of stable curves, Invent. Math. 99 (1990) 321
, ,[11] in preparation,
, , ,[12] Holomorphic anomaly equation and BPS state counting of rational elliptic surface, Adv. Theor. Math. Phys. 3 (1999) 177
, , ,[13] M–theory, topological strings and spinning black holes, Adv. Theor. Math. Phys. 3 (1999) 1445
, , ,[14] Local mirror symmetry at higher genus, from: "Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999)", AMS/IP Stud. Adv. Math. 23, Amer. Math. Soc. (2001) 183
, ,[15] Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, Vol. II", Progr. Math. 36, Birkhäuser (1983) 271
,[16] Hodge integrals and degenerate contributions, Comm. Math. Phys. 208 (1999) 489
,[17] Mirror symmetry, Clay Mathematics Monographs 1, American Mathematical Society (2003)
, , , , , , , ,[18] $A=B$, A K Peters Ltd. (1996)
, , ,[19] A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press (1996)
, ,Cité par Sources :