BPS states of curves in Calabi–Yau 3–folds
Geometry & topology, Tome 5 (2001) no. 1, pp. 287-318.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The Gopakumar–Vafa integrality conjecture is defined and studied for the local geometry of a super-rigid curve in a Calabi–Yau 3–fold. The integrality predicted in Gromov–Witten theory by the Gopakumar–Vafa BPS count is verified in a natural series of cases in this local geometry. The method involves Gromov–Witten computations, Möbius inversion, and a combinatorial analysis of the numbers of étale covers of a curve.

DOI : 10.2140/gt.2001.5.287
Keywords: Gromov–Witten invariants, BPS states, Calabi–Yau 3–folds

Bryan, Jim 1 ; Pandharipande, Rahul 2

1 Department of Mathematics, Tulane University, 6823 St Charles Ave, New Orleans, Louisiana 70118, USA
2 Department of Mathematics, California Institute of Technology, Pasadena, California 91125, USA
@article{GT_2001_5_1_a8,
     author = {Bryan, Jim and Pandharipande, Rahul},
     title = {BPS states of curves in {Calabi{\textendash}Yau} 3{\textendash}folds},
     journal = {Geometry & topology},
     pages = {287--318},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2001},
     doi = {10.2140/gt.2001.5.287},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.287/}
}
TY  - JOUR
AU  - Bryan, Jim
AU  - Pandharipande, Rahul
TI  - BPS states of curves in Calabi–Yau 3–folds
JO  - Geometry & topology
PY  - 2001
SP  - 287
EP  - 318
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.287/
DO  - 10.2140/gt.2001.5.287
ID  - GT_2001_5_1_a8
ER  - 
%0 Journal Article
%A Bryan, Jim
%A Pandharipande, Rahul
%T BPS states of curves in Calabi–Yau 3–folds
%J Geometry & topology
%D 2001
%P 287-318
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.287/
%R 10.2140/gt.2001.5.287
%F GT_2001_5_1_a8
Bryan, Jim; Pandharipande, Rahul. BPS states of curves in Calabi–Yau 3–folds. Geometry & topology, Tome 5 (2001) no. 1, pp. 287-318. doi : 10.2140/gt.2001.5.287. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.287/

[1] A A Beĭlinson, J Bernstein, P Deligne, Faisceaux pervers, from: "Analysis and topology on singular spaces I (Luminy, 1981)", Astérisque 100, Soc. Math. France (1982) 5

[2] J Bryan, Evidence for a conjecture of Pandharipande, Turkish J. Math. 26 (2002) 69

[3] J Bryan, Multiple cover formulas for Gromov–Witten invariants and BPS states, from: "Proceedings of the Workshop “Algebraic Geometry and Integrable Systems related to String Theory” (Kyoto, 2000)" (2001) 144

[4] J Bryan, S Katz, N C Leung, Multiple covers and the integrality conjecture for rational curves in Calabi–Yau threefolds, J. Algebraic Geom. 10 (2001) 549

[5] J Bryan, N C Leung, The enumerative geometry of $K3$ surfaces and modular forms, J. Amer. Math. Soc. 13 (2000) 371

[6] C Faber, R Pandharipande, Hodge integrals and Gromov–Witten theory, Invent. Math. 139 (2000) 173

[7] B Fantechi, R Pandharipande, Stable maps and branch divisors, Compositio Math. 130 (2002) 345

[8] R Gopakumar, C Vafa, M–theory and topological strings II, (1998)

[9] I S Gradshteyn, I M Ryzhik, Table of integrals, series, and products, Academic Press (1996)

[10] J Harris, I Morrison, Slopes of effective divisors on the moduli space of stable curves, Invent. Math. 99 (1990) 321

[11] S Hosono, M H Saito, A Takahashi, in preparation,

[12] S Hosono, M H Saito, A Takahashi, Holomorphic anomaly equation and BPS state counting of rational elliptic surface, Adv. Theor. Math. Phys. 3 (1999) 177

[13] S Katz, A Klemm, C Vafa, M–theory, topological strings and spinning black holes, Adv. Theor. Math. Phys. 3 (1999) 1445

[14] A Klemm, E Zaslow, Local mirror symmetry at higher genus, from: "Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999)", AMS/IP Stud. Adv. Math. 23, Amer. Math. Soc. (2001) 183

[15] D Mumford, Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, Vol. II", Progr. Math. 36, Birkhäuser (1983) 271

[16] R Pandharipande, Hodge integrals and degenerate contributions, Comm. Math. Phys. 208 (1999) 489

[17] K Hori, S Katz, A Klemm, R Pandharipande, R Thomas, C Vafa, R Vakil, E Zaslow, Mirror symmetry, Clay Mathematics Monographs 1, American Mathematical Society (2003)

[18] M Petkovšek, H S Wilf, D Zeilberger, $A=B$, A K Peters Ltd. (1996)

[19] E T Whittaker, G N Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press (1996)

Cité par Sources :