Homotopy K3’s with several symplectic structures
Geometry & topology, Tome 5 (2001) no. 1, pp. 267-285.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this note we prove that, for any n , there exist a smooth 4–manifold, homotopic to a K3 surface, defined by applying the link surgery method of Fintushel–Stern to a certain 2–component graph link, which admits n inequivalent symplectic structures.

DOI : 10.2140/gt.2001.5.267
Keywords: Symplectic topology, 4–manifolds, Seiberg–Witten theory

Vidussi, Stefano 1

1 Department of Mathematics, University of California, Irvine, California 92697, USA
@article{GT_2001_5_1_a7,
     author = {Vidussi, Stefano},
     title = {Homotopy {K3{\textquoteright}s} with several symplectic structures},
     journal = {Geometry & topology},
     pages = {267--285},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2001},
     doi = {10.2140/gt.2001.5.267},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.267/}
}
TY  - JOUR
AU  - Vidussi, Stefano
TI  - Homotopy K3’s with several symplectic structures
JO  - Geometry & topology
PY  - 2001
SP  - 267
EP  - 285
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.267/
DO  - 10.2140/gt.2001.5.267
ID  - GT_2001_5_1_a7
ER  - 
%0 Journal Article
%A Vidussi, Stefano
%T Homotopy K3’s with several symplectic structures
%J Geometry & topology
%D 2001
%P 267-285
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.267/
%R 10.2140/gt.2001.5.267
%F GT_2001_5_1_a7
Vidussi, Stefano. Homotopy K3’s with several symplectic structures. Geometry & topology, Tome 5 (2001) no. 1, pp. 267-285. doi : 10.2140/gt.2001.5.267. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.267/

[1] D Eisenbud, W Neumann, Three-dimensional link theory and invariants of plane curve singularities, Annals of Mathematics Studies 110, Princeton University Press (1985)

[2] R Fintushel, R J Stern, Knots, links, and 4–manifolds, Invent. Math. 134 (1998) 363

[3] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999)

[4] C Lebrun, Diffeomorphisms, symplectic forms and Kodaira fibrations, Geom. Topol. 4 (2000) 451

[5] C T Mcmullen, The Alexander polynomial of a 3–manifold and the Thurston norm on cohomology, Ann. Sci. École Norm. Sup. $(4)$ 35 (2002) 153

[6] C T Mcmullen, C H Taubes, 4–manifolds with inequivalent symplectic forms and 3–manifolds with inequivalent fibrations, Math. Res. Lett. 6 (1999) 681

[7] W P Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976) 467

[8] W P Thurston, A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 59 (1986)

[9] S Vidussi, Smooth structure of some symplectic surfaces, Michigan Math. J. 49 (2001) 325

Cité par Sources :