Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In this note we prove that, for any , there exist a smooth 4–manifold, homotopic to a surface, defined by applying the link surgery method of Fintushel–Stern to a certain 2–component graph link, which admits inequivalent symplectic structures.
Vidussi, Stefano 1
@article{GT_2001_5_1_a7, author = {Vidussi, Stefano}, title = {Homotopy {K3{\textquoteright}s} with several symplectic structures}, journal = {Geometry & topology}, pages = {267--285}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2001}, doi = {10.2140/gt.2001.5.267}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.267/} }
Vidussi, Stefano. Homotopy K3’s with several symplectic structures. Geometry & topology, Tome 5 (2001) no. 1, pp. 267-285. doi : 10.2140/gt.2001.5.267. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.267/
[1] Three-dimensional link theory and invariants of plane curve singularities, Annals of Mathematics Studies 110, Princeton University Press (1985)
, ,[2] Knots, links, and 4–manifolds, Invent. Math. 134 (1998) 363
, ,[3] 4–manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999)
, ,[4] Diffeomorphisms, symplectic forms and Kodaira fibrations, Geom. Topol. 4 (2000) 451
,[5] The Alexander polynomial of a 3–manifold and the Thurston norm on cohomology, Ann. Sci. École Norm. Sup. $(4)$ 35 (2002) 153
,[6] 4–manifolds with inequivalent symplectic forms and 3–manifolds with inequivalent fibrations, Math. Res. Lett. 6 (1999) 681
, ,[7] Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976) 467
,[8] A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 59 (1986)
,[9] Smooth structure of some symplectic surfaces, Michigan Math. J. 49 (2001) 325
,Cité par Sources :