Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We consider faithful projective actions of a cocompact lattice of on the projective plane, with the following property: there is a common fixed point, which is a saddle fixed point for every element of infinite order of the the group. Typical examples of such an action are linear actions, ie, when the action arises from a morphism of the group into , viewed as the group of linear transformations of a copy of the affine plane in . We prove that in the general situation, such an action is always topologically linearisable, and that the linearisation is Lipschitz if and only if it is projective. This result is obtained through the study of a certain family of flag structures on Seifert manifolds. As a corollary, we deduce some dynamical properties of the transversely affine flows obtained by deformations of horocyclic flows. In particular, these flows are not minimal.
Barbot, Thierry 1
@article{GT_2001_5_1_a6, author = {Barbot, Thierry}, title = {Flag structures on {Seifert} manifolds}, journal = {Geometry & topology}, pages = {227--266}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2001}, doi = {10.2140/gt.2001.5.227}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.227/} }
Barbot, Thierry. Flag structures on Seifert manifolds. Geometry & topology, Tome 5 (2001) no. 1, pp. 227-266. doi : 10.2140/gt.2001.5.227. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.227/
[1] Geometric approach to rigidity of horocycles, Tokyo J. Math. 18 (1995) 271
,[2] Minimal geodesics, Ergodic Theory Dynam. Systems 10 (1990) 263
,[3] Actions de groupes sur les 1–variétés non séparées et feuilletages de codimension un, Ann. Fac. Sci. Toulouse Math. $(6)$ 7 (1998) 559
,[4] Caractérisation des flots d'Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory Dynam. Systems 15 (1995) 247
,[5] Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France 88 (1960) 229
,[6] Spaces of Kleinian groups, from: "Several Complex Variables I (Proc. Conf., Univ. of Maryland, College Park, Md., 1970)", Lecture Notes in Math. 155, Springer (1970) 9
,[7] Unique ergodicity for horocycle foliations, Israel J. Math. 26 (1977) 43
, ,[8] Expansive flows on Seifert manifolds and on torus bundles, Bol. Soc. Brasil. Mat. $($N.S.$)$ 24 (1993) 89
,[9] Notes on notes of Thurston, from: "Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 3
, , ,[10] Autour de la conjecture de L Markus sur les variétés affines, Invent. Math. 95 (1989) 615
,[11] Convex decompositions of real projective surfaces I: $\pi$–annuli and convexity, J. Differential Geom. 40 (1994) 165
,[12] Convex decompositions of real projective surfaces II: Admissible decompositions, J. Differential Geom. 40 (1994) 239
,[13] Convex decompositions of real projective surfaces III: For closed or nonorientable surfaces, J. Korean Math. Soc. 33 (1996) 1139
,[14] The classification of real projective structures on compact surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 34 (1997) 161
, ,[15] Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc. 118 (1993) 657
, ,[16] Flots d'Anosov sur les 3–variétés fibrées en cercles, Ergodic Theory Dynam. Systems 4 (1984) 67
,[17] Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup. $(4)$ 20 (1987) 251
,[18] Geometric structures on manifolds and varieties of representations, from: "Geometry of group representations (Boulder, CO, 1987)", Contemp. Math. 74, Amer. Math. Soc. (1988) 169
,[19] Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Theory Dynam. Systems 10 (1990) 483
,[20] Groupoïdes d'holonomie et classifiants, Astérisque (1984) 70
,[21] Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. (1980) 137
,[22] Déformations de connexions localement plates, Ann. Inst. Fourier (Grenoble) 18 (1968) 103
,[23] Generalized counterexamples to the Seifert conjecture, Ann. of Math. $(2)$ 144 (1996) 239
, ,[24] The geometry of finitely generated kleinian groups, Ann. of Math. $(2)$ 99 (1974) 383
,[25] Affine foliations on 3–manifolds, preprint
,[26] The affine structures on the real two-torus I, Osaka J. Math. 11 (1974) 181
, ,[27] Anosov flows, Amer. J. Math. 94 (1972) 729
,[28] Foundations of hyperbolic manifolds, Graduate Texts in Mathematics 149, Springer (2006)
,[29] Variétés anti-de Sitter de dimension 3 possédant un champ de Killing non trivial, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 525
,[30] Cours IHES
,[31] Foliations on 3–manifolds which are circle bundles, PhD thesis, UC Berkeley (1972)
,Cité par Sources :