Gauge theoretic invariants of Dehn surgeries on knots
Geometry & topology, Tome 5 (2001) no. 1, pp. 143-226.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

New methods for computing a variety of gauge theoretic invariants for homology 3–spheres are developed. These invariants include the Chern–Simons invariants, the spectral flow of the odd signature operator, and the rho invariants of irreducible SU(2) representations. These quantities are calculated for flat SU(2) connections on homology 3–spheres obtained by 1k Dehn surgery on (2,q) torus knots. The methods are then applied to compute the SU(3) gauge theoretic Casson invariant (introduced in [J. Diff. Geom. 50 (1998) 147-206]) for Dehn surgeries on (2,q) torus knots for q = 3,5,7 and 9.

DOI : 10.2140/gt.2001.5.143
Keywords: homology 3–sphere, gauge theory, 3–manifold invariants, spectral flow, Maslov index

Boden, Hans U 1 ; Herald, Christopher M 2 ; Kirk, Paul A 3 ; Klassen, Eric P 4

1 McMaster University, Hamilton, Ontario, L8S 4K1, Canada
2 University of Nevada, Reno, Nevada 89557, USA
3 Indiana University, Bloomington, Indiana 47405, USA
4 Florida State University, Tallahassee, Florida 32306, USA
@article{GT_2001_5_1_a5,
     author = {Boden, Hans U and Herald, Christopher M and Kirk, Paul A and Klassen, Eric P},
     title = {Gauge theoretic invariants of {Dehn} surgeries on knots},
     journal = {Geometry & topology},
     pages = {143--226},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2001},
     doi = {10.2140/gt.2001.5.143},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.143/}
}
TY  - JOUR
AU  - Boden, Hans U
AU  - Herald, Christopher M
AU  - Kirk, Paul A
AU  - Klassen, Eric P
TI  - Gauge theoretic invariants of Dehn surgeries on knots
JO  - Geometry & topology
PY  - 2001
SP  - 143
EP  - 226
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.143/
DO  - 10.2140/gt.2001.5.143
ID  - GT_2001_5_1_a5
ER  - 
%0 Journal Article
%A Boden, Hans U
%A Herald, Christopher M
%A Kirk, Paul A
%A Klassen, Eric P
%T Gauge theoretic invariants of Dehn surgeries on knots
%J Geometry & topology
%D 2001
%P 143-226
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.143/
%R 10.2140/gt.2001.5.143
%F GT_2001_5_1_a5
Boden, Hans U; Herald, Christopher M; Kirk, Paul A; Klassen, Eric P. Gauge theoretic invariants of Dehn surgeries on knots. Geometry & topology, Tome 5 (2001) no. 1, pp. 143-226. doi : 10.2140/gt.2001.5.143. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.143/

[1] S Akbulut, J D Mccarthy, Casson's invariant for oriented homology 3–spheres, an exposition, Mathematical Notes 36, Princeton University Press (1990)

[2] D Auckly, A topological method to compute spectral flow, Kyungpook Math. J. 38 (1998) 181

[3] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43

[4] H U Boden, Unitary representations of Brieskorn spheres, Duke Math. J. 75 (1994) 193

[5] H U Boden, C M Herald, The $\mathrm{SU}(3)$ Casson invariant for integral homology 3–spheres, J. Differential Geom. 50 (1998) 147

[6] B Booß-Bavnbek, K P Wojciechowski, Elliptic boundary problems for Dirac operators, Mathematics: Theory Applications, Birkhäuser (1993)

[7] U Bunke, On the gluing problem for the $\eta$–invariant, J. Differential Geom. 41 (1995) 397

[8] S E Cappell, R Lee, E Y Miller, A symplectic geometry approach to generalized Casson's invariants of 3–manifolds, Bull. Amer. Math. Soc. $($N.S.$)$ 22 (1990) 269

[9] S E Cappell, R Lee, E Y Miller, On the Maslov index, Comm. Pure Appl. Math. 47 (1994) 121

[10] S E Cappell, R Lee, E Y Miller, Self-adjoint elliptic operators and manifold decompositions I: Low eigenmodes and stretching, Comm. Pure Appl. Math. 49 (1996) 825

[11] H S M Coxeter, W O J Moser, Generators and relations for discrete groups, Ergebnisse der Mathematik und ihrer Grenzgebiete 14, Springer (1965)

[12] M Daniel, An extension of a theorem of Nicolaescu on spectral flow and the Maslov index, Proc. Amer. Math. Soc. 128 (2000) 611

[13] M Daniel, Maslov index, symplectic reduction in a symplectic Hilbert space and a splitting formula for spectral flow, PhD thesis, Indiana University, Bloomington (1997)

[14] M Daniel, P Kirk, A general splitting formula for the spectral flow, Michigan Math. J. 46 (1999) 589

[15] M S Farber, J P Levine, Jumps of the eta-invariant, Math. Z. 223 (1996) 197

[16] B Fine, P Kirk, E Klassen, A local analytic splitting of the holonomy map on flat connections, Math. Ann. 299 (1994) 171

[17] R Fintushel, R J Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. $(3)$ 61 (1990) 109

[18] T Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer (1995)

[19] P A Kirk, E P Klassen, Chern–Simons invariants of 3–manifolds and representation spaces of knot groups, Math. Ann. 287 (1990) 343

[20] P Kirk, E Klassen, Computing spectral flow via cup products, J. Differential Geom. 40 (1994) 505

[21] P Kirk, E Klassen, Analytic deformations of the spectrum of a family of Dirac operators on an odd-dimensional manifold with boundary, Mem. Amer. Math. Soc. 124 (1996)

[22] P A Kirk, E P Klassen, The spectral flow of the odd signature operator and higher Massey products, Math. Proc. Cambridge Philos. Soc. 121 (1997) 297

[23] P Kirk, E Klassen, Continuity and analyticity of families of self-adjoint Dirac operators on a manifold with boundary, Illinois J. Math. 42 (1998) 123

[24] P Kirk, E Klassen, D Ruberman, Splitting the spectral flow and the Alexander matrix, Comment. Math. Helv. 69 (1994) 375

[25] P Kirk, M Lesch, The $\eta$–invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary, Forum Math. 16 (2004) 553

[26] E P Klassen, Representations of knot groups in $\mathrm{SU}(2)$, Trans. Amer. Math. Soc. 326 (1991) 795

[27] X S Lin, Z Wang, Fermat limit and congruence of Ohtsuki invariants, from: "Proceedings of the Kirbyfest (Berkeley, CA, 1998)", Geom. Topol. Monogr. 2, Geom. Topol. Publ., Coventry (1999) 321

[28] T Mrowka, K Walker, private communication of unpublished research (1993)

[29] L I Nicolaescu, The Maslov index, the spectral flow, and decompositions of manifolds, Duke Math. J. 80 (1995) 485

[30] L I Nicolaescu, Generalized symplectic geometries and the index of families of elliptic problems, Mem. Amer. Math. Soc. 128 (1997)

[31] C H Taubes, Casson's invariant and gauge theory, J. Differential Geom. 31 (1990) 547

[32] K Walker, An extension of Casson's invariant, Annals of Mathematics Studies 126, Princeton University Press (1992)

Cité par Sources :