Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that the natural map , where is a torsion-free group and is obtained by adding a new generator and a new relator , is surjective only if is conjugate to or where . This solves a special case of the surjectivity problem for group extensions, raised by Cohen [Topology 16 (1977) 79–88].
Cohen, Marshall M 1 ; Rourke, Colin 2
@article{GT_2001_5_1_a4, author = {Cohen, Marshall M and Rourke, Colin}, title = {The surjectivity problem for one-generator, one-relator extensions of torsion-free groups}, journal = {Geometry & topology}, pages = {127--142}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2001}, doi = {10.2140/gt.2001.5.127}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.127/} }
TY - JOUR AU - Cohen, Marshall M AU - Rourke, Colin TI - The surjectivity problem for one-generator, one-relator extensions of torsion-free groups JO - Geometry & topology PY - 2001 SP - 127 EP - 142 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.127/ DO - 10.2140/gt.2001.5.127 ID - GT_2001_5_1_a4 ER -
%0 Journal Article %A Cohen, Marshall M %A Rourke, Colin %T The surjectivity problem for one-generator, one-relator extensions of torsion-free groups %J Geometry & topology %D 2001 %P 127-142 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.127/ %R 10.2140/gt.2001.5.127 %F GT_2001_5_1_a4
Cohen, Marshall M; Rourke, Colin. The surjectivity problem for one-generator, one-relator extensions of torsion-free groups. Geometry & topology, Tome 5 (2001) no. 1, pp. 127-142. doi : 10.2140/gt.2001.5.127. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.127/
[1] A course in simple-homotopy theory, Graduate Texts in Mathematics 10, Springer (1973)
,[2] Whitehead torsion, group extensions, and Zeeman's conjecture in high dimensions, Topology 16 (1977) 79
,[3] The conjugacy problem for Dehn twist automorphisms of free groups, Comment. Math. Helv. 74 (1999) 179
, ,[4] Klyachko's methods and the solution of equations over torsion-free groups, Enseign. Math. $(2)$ 42 (1996) 49
, ,[5] Characterisation of a class of equations with solutions over torsion-free groups, from: "The Epstein birthday schrift", Geom. Topol. Monogr. 1, Geom. Topol. Publ., Coventry (1998) 159
, ,[6] Über den Homotopietyp zweidimensionaler CW–Komplexe und Elementartransformationen bei Darstellungen von Gruppen durch Erzeugende und definierende Relationen, J. Reine Angew. Math. 285 (1976) 7
,[7] On higher dimensional knots, from: "Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse)", Princeton Univ. Press (1965) 105
,[8] A funny property of sphere and equations over groups, Comm. Algebra 21 (1993) 2555
,[9] On the non-triviality of some group extensions given by generators and relations, Ann. Math. $(2)$ 106 (1977) 599
,[10] Introduction to piecewise-linear topology, Springer Study Edition, Springer (1982)
, ,Cité par Sources :