The surjectivity problem for one-generator, one-relator extensions of torsion-free groups
Geometry & topology, Tome 5 (2001) no. 1, pp. 127-142.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that the natural map G Ĝ, where G is a torsion-free group and Ĝ is obtained by adding a new generator t and a new relator w, is surjective only if w is conjugate to gt or gt1 where g G. This solves a special case of the surjectivity problem for group extensions, raised by Cohen [Topology 16 (1977) 79–88].

DOI : 10.2140/gt.2001.5.127
Keywords: surjectivity problem, torsion-free groups, Whitehead torsion, Kervaire conjecture

Cohen, Marshall M 1 ; Rourke, Colin 2

1 Cornell University, Ithaca, New York 14853-4102, USA
2 Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
@article{GT_2001_5_1_a4,
     author = {Cohen, Marshall M and Rourke, Colin},
     title = {The surjectivity problem for one-generator, one-relator extensions of torsion-free groups},
     journal = {Geometry & topology},
     pages = {127--142},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2001},
     doi = {10.2140/gt.2001.5.127},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.127/}
}
TY  - JOUR
AU  - Cohen, Marshall M
AU  - Rourke, Colin
TI  - The surjectivity problem for one-generator, one-relator extensions of torsion-free groups
JO  - Geometry & topology
PY  - 2001
SP  - 127
EP  - 142
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.127/
DO  - 10.2140/gt.2001.5.127
ID  - GT_2001_5_1_a4
ER  - 
%0 Journal Article
%A Cohen, Marshall M
%A Rourke, Colin
%T The surjectivity problem for one-generator, one-relator extensions of torsion-free groups
%J Geometry & topology
%D 2001
%P 127-142
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.127/
%R 10.2140/gt.2001.5.127
%F GT_2001_5_1_a4
Cohen, Marshall M; Rourke, Colin. The surjectivity problem for one-generator, one-relator extensions of torsion-free groups. Geometry & topology, Tome 5 (2001) no. 1, pp. 127-142. doi : 10.2140/gt.2001.5.127. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.127/

[1] M M Cohen, A course in simple-homotopy theory, Graduate Texts in Mathematics 10, Springer (1973)

[2] M M Cohen, Whitehead torsion, group extensions, and Zeeman's conjecture in high dimensions, Topology 16 (1977) 79

[3] M M Cohen, M Lustig, The conjugacy problem for Dehn twist automorphisms of free groups, Comment. Math. Helv. 74 (1999) 179

[4] R Fenn, C Rourke, Klyachko's methods and the solution of equations over torsion-free groups, Enseign. Math. $(2)$ 42 (1996) 49

[5] R Fenn, C Rourke, Characterisation of a class of equations with solutions over torsion-free groups, from: "The Epstein birthday schrift", Geom. Topol. Monogr. 1, Geom. Topol. Publ., Coventry (1998) 159

[6] W Metzler, Über den Homotopietyp zweidimensionaler CW–Komplexe und Elementartransformationen bei Darstellungen von Gruppen durch Erzeugende und definierende Relationen, J. Reine Angew. Math. 285 (1976) 7

[7] M A Kervaire, On higher dimensional knots, from: "Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse)", Princeton Univ. Press (1965) 105

[8] A A Klyachko, A funny property of sphere and equations over groups, Comm. Algebra 21 (1993) 2555

[9] O S Rothaus, On the non-triviality of some group extensions given by generators and relations, Ann. Math. $(2)$ 106 (1977) 599

[10] C P Rourke, B J Sanderson, Introduction to piecewise-linear topology, Springer Study Edition, Springer (1982)

Cité par Sources :