Cobordisms and Reidemeister torsions of homotopy lens spaces
Geometry & topology, Tome 5 (2001) no. 1, pp. 109-125.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that any 3–dimensional homotopy lens space M3 that is simple-homotopy equivalent to a lens space L(p,q) is topologically s-cobordant to the lens space. It follows that M has the same multi-signature as L(p,q) and the action of π1(M) on the universal cover of M embeds in a free orthogonal action on S7.

DOI : 10.2140/gt.2001.5.109
Keywords: Reidemeister torsion, lens space, multi-signature, $s$-cobordism

Gadgil, Siddhartha 1

1 Department of Mathematics, SUNY at Stony Brook, Stony Brook, New York 11794, USA
@article{GT_2001_5_1_a3,
     author = {Gadgil, Siddhartha},
     title = {Cobordisms and {Reidemeister} torsions of homotopy lens spaces},
     journal = {Geometry & topology},
     pages = {109--125},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2001},
     doi = {10.2140/gt.2001.5.109},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.109/}
}
TY  - JOUR
AU  - Gadgil, Siddhartha
TI  - Cobordisms and Reidemeister torsions of homotopy lens spaces
JO  - Geometry & topology
PY  - 2001
SP  - 109
EP  - 125
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.109/
DO  - 10.2140/gt.2001.5.109
ID  - GT_2001_5_1_a3
ER  - 
%0 Journal Article
%A Gadgil, Siddhartha
%T Cobordisms and Reidemeister torsions of homotopy lens spaces
%J Geometry & topology
%D 2001
%P 109-125
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.109/
%R 10.2140/gt.2001.5.109
%F GT_2001_5_1_a3
Gadgil, Siddhartha. Cobordisms and Reidemeister torsions of homotopy lens spaces. Geometry & topology, Tome 5 (2001) no. 1, pp. 109-125. doi : 10.2140/gt.2001.5.109. http://geodesic.mathdoc.fr/articles/10.2140/gt.2001.5.109/

[1] E J Brody, The topological classification of the lens spaces, Ann. of Math. $(2)$ 71 (1960) 163

[2] S E Cappell, J L Shaneson, On 4–dimensional $s$–cobordisms, J. Differential Geom. 22 (1985) 97

[3] A L Edmonds, Construction of group actions on four-manifolds, Trans. Amer. Math. Soc. 299 (1987) 155

[4] D B A Epstein, The degree of a map, Proc. London Math. Soc. $(3)$ 16 (1966) 369

[5] R H Fox, Free differential calculus V: The Alexander matrices re-examined, Ann. of Math. $(2)$ 71 (1960) 408

[6] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357

[7] M H Freedman, F Quinn, Topology of 4–manifolds, Princeton Mathematical Series 39, Princeton University Press (1990)

[8] R Fintushel, R Stern, Rational homology cobordisms of spherical space forms, Topology 26 (1987) 385

[9] W Jaco, Heegaard splittings and splitting homomorphisms, Trans. Amer. Math. Soc. 144 (1969) 365

[10] S Kwasik, T Lawson, Nonsmoothable $\mathbb{Z}_p$ actions on contractible 4–manifolds, J. Reine Angew. Math. 437 (1993) 29

[11] J Levine, A characterization of knot polynomials, Topology 4 (1965) 135

[12] J Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358

[13] P Olum, Mappings of manifolds and the notion of degree, Ann. of Math. $(2)$ 58 (1953) 458

[14] D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish (1976)

[15] D Ruberman, Rational homology cobordisms of rational space forms, Topology 27 (1988) 401

[16] J R Stallings, A topological proof of Grushko's theorem on free products, Math. Z. 90 (1965) 1

[17] C B Thomas, Elliptic structures on 3–manifolds, London Mathematical Society Lecture Note Series 104, Cambridge University Press (1986)

[18] V G Turaev, Reidemeister torsion and the Alexander polynomial, Mat. Sb. $($N.S.$)$ 18(66) (1976) 252

[19] C T C Wall, Surgery on compact manifolds, London Mathematical Society Monographs 1, Academic Press (1970)

Cité par Sources :