Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
For an arbitrary Euclidean building we define a certain combing, which satisfies the “fellow traveller property” and admits a recursive definition. Using this combing we prove that any group acting freely, cocompactly and by order preserving automorphisms on a Euclidean building of one of the types admits a biautomatic structure.
Noskov, Gennady A 1
@article{GT_2000_4_1_a1, author = {Noskov, Gennady A}, title = {Combing {Euclidean} buildings}, journal = {Geometry & topology}, pages = {85--116}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2000}, doi = {10.2140/gt.2000.4.85}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.85/} }
Noskov, Gennady A. Combing Euclidean buildings. Geometry & topology, Tome 4 (2000) no. 1, pp. 85-116. doi : 10.2140/gt.2000.4.85. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.85/
[1] Polygonal complexes and combinatorial group theory, Geom. Dedicata 50 (1994) 165
, ,[2] Groupes et algèbres de Lie: Chapitres IV, V et VI, Hermann (1972) 320
,[3] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften 319, Springer (1999)
, ,[4] Geodesics and curvature in metric simplicial complexes, from: "Group theory from a geometrical viewpoint (Trieste, 1990)", World Sci. Publ., River Edge, NJ (1991) 373
,[5] Buildings, Springer Monographs in Mathematics, Springer (1998)
,[6] Hyperbolic buildings, affine buildings, and automatic groups, Michigan Math. J. 42 (1995) 511
, ,[7] Word processing in groups, Jones and Bartlett Publishers (1992)
, , , , , ,[8] Small cancellation theory and automatic groups, Invent. Math. 102 (1990) 305
, ,[9] Small cancellation theory and automatic groups II, Invent. Math. 105 (1991) 641
, ,[10] Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press (1990)
,[11] Automatic structures and boundaries for graphs of groups, Internat. J. Algebra Comput. 4 (1994) 591
, ,[12] The geometry of cube complexes and the complexity of their fundamental groups, Topology 37 (1998) 621
, ,[13] Bicombing of triangular buildings, Sibirsk. Mat. Zh. 40 (1999) 1109
,Cité par Sources :