Manifolds with non-stable fundamental groups at infinity
Geometry & topology, Tome 4 (2000) no. 1, pp. 537-579.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The notion of an open collar is generalized to that of a pseudo-collar. Important properties and examples are discussed. The main result gives conditions which guarantee the existence of a pseudo-collar structure on the end of an open n–manifold (n 7). This paper may be viewed as a generalization of Siebenmann’s famous collaring theorem to open manifolds with non-stable fundamental group systems at infinity.

DOI : 10.2140/gt.2000.4.537
Keywords: non-compact manifold, ends, collar, homotopy collar, pseudo-collar, semistable, Mittag–Leffler

Guilbault, Craig R 1

1 Department of Mathematical Sciences, University of Wisconsin at Milwaukee, Wisconsin 53201-0413, USA
@article{GT_2000_4_1_a18,
     author = {Guilbault, Craig R},
     title = {Manifolds with non-stable fundamental groups at infinity},
     journal = {Geometry & topology},
     pages = {537--579},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2000},
     doi = {10.2140/gt.2000.4.537},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.537/}
}
TY  - JOUR
AU  - Guilbault, Craig R
TI  - Manifolds with non-stable fundamental groups at infinity
JO  - Geometry & topology
PY  - 2000
SP  - 537
EP  - 579
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.537/
DO  - 10.2140/gt.2000.4.537
ID  - GT_2000_4_1_a18
ER  - 
%0 Journal Article
%A Guilbault, Craig R
%T Manifolds with non-stable fundamental groups at infinity
%J Geometry & topology
%D 2000
%P 537-579
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.537/
%R 10.2140/gt.2000.4.537
%F GT_2000_4_1_a18
Guilbault, Craig R. Manifolds with non-stable fundamental groups at infinity. Geometry & topology, Tome 4 (2000) no. 1, pp. 537-579. doi : 10.2140/gt.2000.4.537. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.537/

[1] F D Ancel, C R Guilbault, $\mathcal{Z}$–compactifications of open manifolds, Topology 38 (1999) 1265

[2] M Bestvina, Local homology properties of boundaries of groups, Michigan Math. J. 43 (1996) 123

[3] M G Brin, T L Thickstun, 3–manifolds which are end $1$-movable, Mem. Amer. Math. Soc. 81 (1989)

[4] M Brown, The monotone union of open $n$–cells is an open $n$–cell, Proc. Amer. Math. Soc. 12 (1961) 812

[5] G Carlsson, E K Pedersen, Controlled algebra and the Novikov conjectures for $K$– and $L$–theory, Topology 34 (1995) 731

[6] T A Chapman, L C Siebenmann, Finding a boundary for a Hilbert cube manifold, Acta Math. 137 (1976) 171

[7] M M Cohen, A course in simple-homotopy theory, Graduate Texts in Mathematics 10, Springer (1973)

[8] R J Daverman, F C Tinsley, Laminations, finitely generated perfect groups, and acyclic maps, Michigan Math. J. 33 (1986) 343

[9] R J Daverman, F C Tinsley, Controls on the plus construction, Michigan Math. J. 43 (1996) 389

[10] M W Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. $(2)$ 117 (1983) 293

[11] M W Davis, T Januszkiewicz, Hyperbolization of polyhedra, J. Differential Geom. 34 (1991) 347

[12] S Ferry, A stable converse to the Vietoris–Smale theorem with applications to shape theory, Trans. Amer. Math. Soc. 261 (1980) 369

[13] S C Ferry, Topological Manifolds and Polyhedra, in preparation, Oxford University Press

[14] S C Ferry, S Weinberger, A coarse approach to the Novikov conjecture, from: "Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993)", London Math. Soc. Lecture Note Ser. 226, Cambridge Univ. Press (1995) 147

[15] M H Freedman, F Quinn, Topology of 4–manifolds, Princeton Mathematical Series 39, Princeton University Press (1990)

[16] L S Husch, T M Price, Finding a boundary for a 3–manifold, Ann. of Math. $(2)$ 91 (1970) 223

[17] B Hughes, A Ranicki, Ends of complexes, Cambridge Tracts in Mathematics 123, Cambridge University Press (1996)

[18] O Kakimizu, Finding boundary for the semistable ends of 3–manifolds, Hiroshima Math. J. 17 (1987) 395

[19] S Kwasik, R Schultz, Desuspension of group actions and the ribbon theorem, Topology 27 (1988) 443

[20] M L Mihalik, Semistability at the end of a group extension, Trans. Amer. Math. Soc. 277 (1983) 307

[21] D Quillen, Cohomology of groups, from: "Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2", Gauthier-Villars (1971) 47

[22] C P Rourke, B J Sanderson, Introduction to piecewise-linear topology, Springer Study Edition, Springer (1982)

[23] L C Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, PhD thesis, Princeton University (1965)

[24] L C Siebenmann, On detecting open collars, Trans. Amer. Math. Soc. 142 (1969) 201

[25] E H Spanier, Algebraic topology, Springer (1981)

[26] C T C Wall, Finiteness conditions for CW complexes, Ann. of Math. $(2)$ 81 (1965) 56

[27] C T C Wall, Finiteness conditions for CW complexes II, Proc. Roy. Soc. Ser. A 295 (1966) 129

Cité par Sources :