Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The notion of an open collar is generalized to that of a pseudo-collar. Important properties and examples are discussed. The main result gives conditions which guarantee the existence of a pseudo-collar structure on the end of an open –manifold (). This paper may be viewed as a generalization of Siebenmann’s famous collaring theorem to open manifolds with non-stable fundamental group systems at infinity.
Guilbault, Craig R 1
@article{GT_2000_4_1_a18, author = {Guilbault, Craig R}, title = {Manifolds with non-stable fundamental groups at infinity}, journal = {Geometry & topology}, pages = {537--579}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2000}, doi = {10.2140/gt.2000.4.537}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.537/} }
Guilbault, Craig R. Manifolds with non-stable fundamental groups at infinity. Geometry & topology, Tome 4 (2000) no. 1, pp. 537-579. doi : 10.2140/gt.2000.4.537. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.537/
[1] $\mathcal{Z}$–compactifications of open manifolds, Topology 38 (1999) 1265
, ,[2] Local homology properties of boundaries of groups, Michigan Math. J. 43 (1996) 123
,[3] 3–manifolds which are end $1$-movable, Mem. Amer. Math. Soc. 81 (1989)
, ,[4] The monotone union of open $n$–cells is an open $n$–cell, Proc. Amer. Math. Soc. 12 (1961) 812
,[5] Controlled algebra and the Novikov conjectures for $K$– and $L$–theory, Topology 34 (1995) 731
, ,[6] Finding a boundary for a Hilbert cube manifold, Acta Math. 137 (1976) 171
, ,[7] A course in simple-homotopy theory, Graduate Texts in Mathematics 10, Springer (1973)
,[8] Laminations, finitely generated perfect groups, and acyclic maps, Michigan Math. J. 33 (1986) 343
, ,[9] Controls on the plus construction, Michigan Math. J. 43 (1996) 389
, ,[10] Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. $(2)$ 117 (1983) 293
,[11] Hyperbolization of polyhedra, J. Differential Geom. 34 (1991) 347
, ,[12] A stable converse to the Vietoris–Smale theorem with applications to shape theory, Trans. Amer. Math. Soc. 261 (1980) 369
,[13] Topological Manifolds and Polyhedra, in preparation, Oxford University Press
,[14] A coarse approach to the Novikov conjecture, from: "Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993)", London Math. Soc. Lecture Note Ser. 226, Cambridge Univ. Press (1995) 147
, ,[15] Topology of 4–manifolds, Princeton Mathematical Series 39, Princeton University Press (1990)
, ,[16] Finding a boundary for a 3–manifold, Ann. of Math. $(2)$ 91 (1970) 223
, ,[17] Ends of complexes, Cambridge Tracts in Mathematics 123, Cambridge University Press (1996)
, ,[18] Finding boundary for the semistable ends of 3–manifolds, Hiroshima Math. J. 17 (1987) 395
,[19] Desuspension of group actions and the ribbon theorem, Topology 27 (1988) 443
, ,[20] Semistability at the end of a group extension, Trans. Amer. Math. Soc. 277 (1983) 307
,[21] Cohomology of groups, from: "Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2", Gauthier-Villars (1971) 47
,[22] Introduction to piecewise-linear topology, Springer Study Edition, Springer (1982)
, ,[23] The obstruction to finding a boundary for an open manifold of dimension greater than five, PhD thesis, Princeton University (1965)
,[24] On detecting open collars, Trans. Amer. Math. Soc. 142 (1969) 201
,[25] Algebraic topology, Springer (1981)
,[26] Finiteness conditions for CW complexes, Ann. of Math. $(2)$ 81 (1965) 56
,[27] Finiteness conditions for CW complexes II, Proc. Roy. Soc. Ser. A 295 (1966) 129
,Cité par Sources :