Diffeomorphisms, symplectic forms and Kodaira fibrations
Geometry & topology, Tome 4 (2000) no. 1, pp. 451-456.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

As was recently pointed out by McMullen and Taubes [Math. Res. Lett. 6 (1999) 681–696], there are 4–manifolds for which the diffeomorphism group does not act transitively on the deformation classes of orientation-compatible symplectic structures. This note points out some other 4–manifolds with this property which arise as the orientation-reversed versions of certain complex surfaces constructed by Kodaira [J. Analyse Math. 19 (1967) 207–215]. While this construction is arguably simpler than that of McMullen and Taubes, its simplicity comes at a price: the examples exhibited herein all have large fundamental groups.

DOI : 10.2140/gt.2000.4.451
Keywords: symplectic manifold, complex surface, Seiberg–Witten invariants

LeBrun, Claude 1

1 Department of Mathematics, SUNY at Stony Brook, Stony Brook, New York 11794-3651, USA
@article{GT_2000_4_1_a15,
     author = {LeBrun, Claude},
     title = {Diffeomorphisms, symplectic forms and {Kodaira} fibrations},
     journal = {Geometry & topology},
     pages = {451--456},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2000},
     doi = {10.2140/gt.2000.4.451},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.451/}
}
TY  - JOUR
AU  - LeBrun, Claude
TI  - Diffeomorphisms, symplectic forms and Kodaira fibrations
JO  - Geometry & topology
PY  - 2000
SP  - 451
EP  - 456
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.451/
DO  - 10.2140/gt.2000.4.451
ID  - GT_2000_4_1_a15
ER  - 
%0 Journal Article
%A LeBrun, Claude
%T Diffeomorphisms, symplectic forms and Kodaira fibrations
%J Geometry & topology
%D 2000
%P 451-456
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.451/
%R 10.2140/gt.2000.4.451
%F GT_2000_4_1_a15
LeBrun, Claude. Diffeomorphisms, symplectic forms and Kodaira fibrations. Geometry & topology, Tome 4 (2000) no. 1, pp. 451-456. doi : 10.2140/gt.2000.4.451. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.451/

[1] M F Atiyah, The signature of fibre-bundles, from: "Global Analysis (Papers in Honor of K. Kodaira)", Univ. Tokyo Press (1969) 73

[2] W Barth, C Peters, A Van De Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 4, Springer (1984)

[3] K Kodaira, A certain type of irregular algebraic surfaces, J. Analyse Math. 19 (1967) 207

[4] D Kotschick, Signatures, monopoles and mapping class groups, Math. Res. Lett. 5 (1998) 227

[5] N C Leung, Seiberg Witten invariants and uniformizations, Math. Ann. 306 (1996) 31

[6] D Mcduff, D Salamon, Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1995)

[7] C T Mcmullen, C H Taubes, 4–manifolds with inequivalent symplectic forms and 3–manifolds with inequivalent fibrations, Math. Res. Lett. 6 (1999) 681

[8] J W Morgan, The Seiberg–Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes 44, Princeton University Press (1996)

[9] J Petean, Indefinite Kähler–Einstein metrics on compact complex surfaces, Comm. Math. Phys. 189 (1997) 227

[10] C H Taubes, More constraints on symplectic forms from Seiberg–Witten invariants, Math. Res. Lett. 2 (1995) 9

Cité par Sources :