Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
As was recently pointed out by McMullen and Taubes [Math. Res. Lett. 6 (1999) 681–696], there are 4–manifolds for which the diffeomorphism group does not act transitively on the deformation classes of orientation-compatible symplectic structures. This note points out some other 4–manifolds with this property which arise as the orientation-reversed versions of certain complex surfaces constructed by Kodaira [J. Analyse Math. 19 (1967) 207–215]. While this construction is arguably simpler than that of McMullen and Taubes, its simplicity comes at a price: the examples exhibited herein all have large fundamental groups.
LeBrun, Claude 1
@article{GT_2000_4_1_a15, author = {LeBrun, Claude}, title = {Diffeomorphisms, symplectic forms and {Kodaira} fibrations}, journal = {Geometry & topology}, pages = {451--456}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2000}, doi = {10.2140/gt.2000.4.451}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.451/} }
LeBrun, Claude. Diffeomorphisms, symplectic forms and Kodaira fibrations. Geometry & topology, Tome 4 (2000) no. 1, pp. 451-456. doi : 10.2140/gt.2000.4.451. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.451/
[1] The signature of fibre-bundles, from: "Global Analysis (Papers in Honor of K. Kodaira)", Univ. Tokyo Press (1969) 73
,[2] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 4, Springer (1984)
, , ,[3] A certain type of irregular algebraic surfaces, J. Analyse Math. 19 (1967) 207
,[4] Signatures, monopoles and mapping class groups, Math. Res. Lett. 5 (1998) 227
,[5] Seiberg Witten invariants and uniformizations, Math. Ann. 306 (1996) 31
,[6] Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1995)
, ,[7] 4–manifolds with inequivalent symplectic forms and 3–manifolds with inequivalent fibrations, Math. Res. Lett. 6 (1999) 681
, ,[8] The Seiberg–Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes 44, Princeton University Press (1996)
,[9] Indefinite Kähler–Einstein metrics on compact complex surfaces, Comm. Math. Phys. 189 (1997) 227
,[10] More constraints on symplectic forms from Seiberg–Witten invariants, Math. Res. Lett. 2 (1995) 9
,Cité par Sources :