Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that for a hyperbolic knot complement, all but at most 12 Dehn fillings are irreducible with infinite word-hyperbolic fundamental group.
Agol, Ian 1
@article{GT_2000_4_1_a14, author = {Agol, Ian}, title = {Bounds on exceptional {Dehn} filling}, journal = {Geometry & topology}, pages = {431--449}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2000}, doi = {10.2140/gt.2000.4.431}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.431/} }
Agol, Ian. Bounds on exceptional Dehn filling. Geometry & topology, Tome 4 (2000) no. 1, pp. 431-449. doi : 10.2140/gt.2000.4.431. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.431/
[1] The noncompact hyperbolic 3–manifold of minimal volume, Proc. Amer. Math. Soc. 100 (1987) 601
,[2] Volume and topology of hyperbolic 3–manifolds, PhD thesis, UC San Diego (1998)
,[3] The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991) 469
, ,[4] Spherical space forms and Dehn filling, Topology 35 (1996) 809
, ,[5] Packing of spheres in spaces of constant curvature, Acta Math. Acad. Sci. Hungar. 32 (1978) 243
,[6] The orientable cusped hyperbolic 3–manifolds of minimal volume, preprint
, ,[7] The simple loop conjecture, J. Differential Geom. 21 (1985) 143
,[8] Quasi-minimal semi-Euclidean laminations in 3–manifolds, from: "Surveys in differential geometry, Vol. III (Cambridge, MA, 1996)", Int. Press, Boston (1998) 195
,[9] Dehn filling: a survey, from: "Knot theory (Warsaw, 1995)", Banach Center Publ. 42, Polish Acad. Sci. (1998) 129
,[10] Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[11] On the crossing number of high degree satellites of hyperbolic knots, Math. Res. Lett. 5 (1998) 235
,[12] Word hyperbolic Dehn surgery, Invent. Math. 140 (2000) 243
,[13] Boundaries of $\pi_1$–injective surfaces, Topology Appl. 78 (1997) 215
,[14] The Geometry and Topology of 3–manifolds, Princeton University (1978–1979)
,[15] Hyperbolic structures on 3–manifolds I: Deformation of acylindrical manifolds, Ann. of Math. $(2)$ 124 (1986) 203
,Cité par Sources :