Bounds on exceptional Dehn filling
Geometry & topology, Tome 4 (2000) no. 1, pp. 431-449.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that for a hyperbolic knot complement, all but at most 12 Dehn fillings are irreducible with infinite word-hyperbolic fundamental group.

DOI : 10.2140/gt.2000.4.431
Keywords: hyperbolic, Dehn filling, word-hyperbolic

Agol, Ian 1

1 Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia
@article{GT_2000_4_1_a14,
     author = {Agol, Ian},
     title = {Bounds on exceptional {Dehn} filling},
     journal = {Geometry & topology},
     pages = {431--449},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2000},
     doi = {10.2140/gt.2000.4.431},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.431/}
}
TY  - JOUR
AU  - Agol, Ian
TI  - Bounds on exceptional Dehn filling
JO  - Geometry & topology
PY  - 2000
SP  - 431
EP  - 449
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.431/
DO  - 10.2140/gt.2000.4.431
ID  - GT_2000_4_1_a14
ER  - 
%0 Journal Article
%A Agol, Ian
%T Bounds on exceptional Dehn filling
%J Geometry & topology
%D 2000
%P 431-449
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.431/
%R 10.2140/gt.2000.4.431
%F GT_2000_4_1_a14
Agol, Ian. Bounds on exceptional Dehn filling. Geometry & topology, Tome 4 (2000) no. 1, pp. 431-449. doi : 10.2140/gt.2000.4.431. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.431/

[1] C C Adams, The noncompact hyperbolic 3–manifold of minimal volume, Proc. Amer. Math. Soc. 100 (1987) 601

[2] I Agol, Volume and topology of hyperbolic 3–manifolds, PhD thesis, UC San Diego (1998)

[3] M Bestvina, G Mess, The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991) 469

[4] S A Bleiler, C D Hodgson, Spherical space forms and Dehn filling, Topology 35 (1996) 809

[5] K Böröczky, Packing of spheres in spaces of constant curvature, Acta Math. Acad. Sci. Hungar. 32 (1978) 243

[6] C Cao, R Meyerhoff, The orientable cusped hyperbolic 3–manifolds of minimal volume, preprint

[7] D Gabai, The simple loop conjecture, J. Differential Geom. 21 (1985) 143

[8] D Gabai, Quasi-minimal semi-Euclidean laminations in 3–manifolds, from: "Surveys in differential geometry, Vol. III (Cambridge, MA, 1996)", Int. Press, Boston (1998) 195

[9] C M Gordon, Dehn filling: a survey, from: "Knot theory (Warsaw, 1995)", Banach Center Publ. 42, Polish Acad. Sci. (1998) 129

[10] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[11] Z X He, On the crossing number of high degree satellites of hyperbolic knots, Math. Res. Lett. 5 (1998) 235

[12] M Lackenby, Word hyperbolic Dehn surgery, Invent. Math. 140 (2000) 243

[13] U Oertel, Boundaries of $\pi_1$–injective surfaces, Topology Appl. 78 (1997) 215

[14] W P Thurston, The Geometry and Topology of 3–manifolds, Princeton University (1978–1979)

[15] W P Thurston, Hyperbolic structures on 3–manifolds I: Deformation of acylindrical manifolds, Ann. of Math. $(2)$ 124 (1986) 203

Cité par Sources :