Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We use a new geometric construction, grope splitting, to give a sharp bound for separation of surfaces in 4–manifolds. We also describe applications of this technique in link-homotopy theory, and to the problem of locating –null surfaces in 4–manifolds. In our applications to link-homotopy, grope splitting serves as a geometric substitute for the Milnor group.
Krushkal, Vyacheslav S 1
@article{GT_2000_4_1_a12, author = {Krushkal, Vyacheslav S}, title = {Exponential separation in 4{\textendash}manifolds}, journal = {Geometry & topology}, pages = {397--405}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2000}, doi = {10.2140/gt.2000.4.397}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.397/} }
Krushkal, Vyacheslav S. Exponential separation in 4–manifolds. Geometry & topology, Tome 4 (2000) no. 1, pp. 397-405. doi : 10.2140/gt.2000.4.397. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.397/
[1] The disk theorem for four-dimensional manifolds, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983)", PWN (1984) 647
,[2] On the $(A,B)$–slice problem, Topology 28 (1989) 91
, ,[3] Topology of 4–manifolds, Princeton Mathematical Series 39, Princeton University Press (1990)
, ,[4] 4–manifold topology I: Subexponential groups, Invent. Math. 122 (1995) 509
, ,[5] A calculus for framed links in $S^3$, Invent. Math. 45 (1978) 35
,[6] On the relative slice problem and four-dimensional topological surgery, Math. Ann. 315 (1999) 363
,[7] Subexponential groups in 4–manifold topology, Geom. Topol. 4 (2000) 407
, ,[8] Alexander duality, gropes and link homotopy, Geom. Topol. 1 (1997) 51
, ,[9] Link groups, Ann. of Math. $(2)$ 59 (1954) 177
,Cité par Sources :