Taut ideal triangulations of 3–manifolds
Geometry & topology, Tome 4 (2000) no. 1, pp. 369-395.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A taut ideal triangulation of a 3–manifold is a topological ideal triangulation with extra combinatorial structure: a choice of transverse orientation on each ideal 2–simplex, satisfying two simple conditions. The aim of this paper is to demonstrate that taut ideal triangulations are very common, and that their behaviour is very similar to that of a taut foliation. For example, by studying normal surfaces in taut ideal triangulations, we give a new proof of Gabai’s result that the singular genus of a knot in the 3–sphere is equal to its genus.

DOI : 10.2140/gt.2000.4.369
Keywords: taut, ideal triangulation, foliation, singular genus

Lackenby, Marc 1

1 Mathematical Institute, Oxford University, 24–29 St Giles’, Oxford OX1 3LB, United Kingdom
@article{GT_2000_4_1_a11,
     author = {Lackenby, Marc},
     title = {Taut ideal triangulations of 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {369--395},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2000},
     doi = {10.2140/gt.2000.4.369},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.369/}
}
TY  - JOUR
AU  - Lackenby, Marc
TI  - Taut ideal triangulations of 3–manifolds
JO  - Geometry & topology
PY  - 2000
SP  - 369
EP  - 395
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.369/
DO  - 10.2140/gt.2000.4.369
ID  - GT_2000_4_1_a11
ER  - 
%0 Journal Article
%A Lackenby, Marc
%T Taut ideal triangulations of 3–manifolds
%J Geometry & topology
%D 2000
%P 369-395
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.369/
%R 10.2140/gt.2000.4.369
%F GT_2000_4_1_a11
Lackenby, Marc. Taut ideal triangulations of 3–manifolds. Geometry & topology, Tome 4 (2000) no. 1, pp. 369-395. doi : 10.2140/gt.2000.4.369. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.369/

[1] D Calegari, Foliations transverse to triangulations of 3–manifolds, Comm. Anal. Geom. 8 (2000) 133

[2] D Gabai, Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445

[3] D Gabai, Foliations and the topology of 3–manifolds II, J. Differential Geom. 26 (1987) 461

[4] M Lackenby, Word hyperbolic Dehn surgery, Invent. Math. 140 (2000) 243

[5] U Oertel, Homology branched surfaces: Thurston's norm on $H_2(M^3)$, from: "Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser. 112, Cambridge Univ. Press (1986) 253

[6] L Person, A piecewise linear proof that the singular norm is the Thurston norm, Topology Appl. 51 (1993) 269

[7] C Petronio, J Porti, Negatively oriented ideal triangulations and a proof of Thurston's hyperbolic Dehn filling theorem, preprint (1999)

[8] M Scharlemann, Sutured manifolds and generalized Thurston norms, J. Differential Geom. 29 (1989) 557

[9] A Thompson, Thin position and the recognition problem for $S^3$, Math. Res. Lett. 1 (1994) 613

[10] W P Thurston, The Geometry and Topology of 3–manifolds, Princeton University (1978–1979)

Cité par Sources :