On the classification of tight contact structures I
Geometry & topology, Tome 4 (2000) no. 1, pp. 309-368.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We develop new techniques in the theory of convex surfaces to prove complete classification results for tight contact structures on lens spaces, solid tori, and T2 × I.

DOI : 10.2140/gt.2000.4.309
Keywords: tight, contact structure, lens spaces, solid tori

Honda, Ko 1

1 Mathematics Department, University of Georgia, Athens, Georgia 30602, USA
@article{GT_2000_4_1_a10,
     author = {Honda, Ko},
     title = {On the classification of tight contact structures {I}},
     journal = {Geometry & topology},
     pages = {309--368},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2000},
     doi = {10.2140/gt.2000.4.309},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.309/}
}
TY  - JOUR
AU  - Honda, Ko
TI  - On the classification of tight contact structures I
JO  - Geometry & topology
PY  - 2000
SP  - 309
EP  - 368
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.309/
DO  - 10.2140/gt.2000.4.309
ID  - GT_2000_4_1_a10
ER  - 
%0 Journal Article
%A Honda, Ko
%T On the classification of tight contact structures I
%J Geometry & topology
%D 2000
%P 309-368
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.309/
%R 10.2140/gt.2000.4.309
%F GT_2000_4_1_a10
Honda, Ko. On the classification of tight contact structures I. Geometry & topology, Tome 4 (2000) no. 1, pp. 309-368. doi : 10.2140/gt.2000.4.309. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.309/

[1] D Bennequin, Entrelacements et équations de Pfaff, from: "Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982)", Astérisque 107, Soc. Math. France (1983) 87

[2] Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623

[3] Y Eliashberg, Topological characterization of Stein manifolds of dimension $\gt 2$, Internat. J. Math. 1 (1990) 29

[4] Y Eliashberg, Filling by holomorphic discs and its applications, from: "Geometry of low-dimensional manifolds, 2 (Durham, 1989)", London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press (1990) 45

[5] Y Eliashberg, Contact 3–manifolds twenty years since J Martinet's work, Ann. Inst. Fourier (Grenoble) 42 (1992) 165

[6] J B Etnyre, Tight contact structures on lens spaces, Commun. Contemp. Math. 2 (2000) 559

[7] J B Etnyre, Transversal torus knots, Geom. Topol. 3 (1999) 253

[8] J B Etnyre, K Honda, On the nonexistence of tight contact structures, Ann. of Math. $(2)$ 153 (2001) 749

[9] Y M Eliashberg, W P Thurston, Confoliations, University Lecture Series 13, American Mathematical Society (1998)

[10] M Fraser, Classifying Legendrian knots in tight contact 3–manifolds, PhD thesis (1994)

[11] E Giroux, Une structure de contact, même tendue, est plus ou moins tordue, Ann. Sci. École Norm. Sup. $(4)$ 27 (1994) 697

[12] E Giroux, Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637

[13] E Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000) 615

[14] R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. $(2)$ 148 (1998) 619

[15] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[16] A Hatcher, Notes on basic 3–manifold topology, preliminary notes

[17] K Honda, On the classification of tight contact structures II, J. Differential Geom. 55 (2000) 83

[18] K Honda, Gluing tight contact structures, Duke Math. J. 115 (2002) 435

[19] Y Kanda, The classification of tight contact structures on the 3–torus, Comm. Anal. Geom. 5 (1997) 413

[20] Y Kanda, On the Thurston–Bennequin invariant of Legendrian knots and nonexactness of Bennequin's inequality, Invent. Math. 133 (1998) 227

[21] P Lisca, G Matić, Tight contact structures and Seiberg–Witten invariants, Invent. Math. 129 (1997) 509

[22] S Makar-Limanov, Tight contact structures on solid tori, Trans. Amer. Math. Soc. 350 (1998) 1013

Cité par Sources :