Normal all pseudo-Anosov subgroups of mapping class groups
Geometry & topology, Tome 4 (2000) no. 1, pp. 293-307.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct the first known examples of nontrivial, normal, all pseudo-Anosov subgroups of mapping class groups of surfaces. Specifically, we construct such subgroups for the closed genus two surface and for the sphere with five or more punctures. Using the branched covering of the genus two surface over the sphere and results of Birman and Hilden, we prove that a reducible mapping class of the genus two surface projects to a reducible mapping class on the sphere with six punctures. The construction introduces “Brunnian” mapping classes of the sphere, which are analogous to Brunnian links.

DOI : 10.2140/gt.2000.4.293
Keywords: mapping class group, pseudo-Anosov, Brunnian

Whittlesey, Kim 1

1 Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210, USA
@article{GT_2000_4_1_a9,
     author = {Whittlesey, Kim},
     title = {Normal all {pseudo-Anosov} subgroups of mapping class groups},
     journal = {Geometry & topology},
     pages = {293--307},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2000},
     doi = {10.2140/gt.2000.4.293},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.293/}
}
TY  - JOUR
AU  - Whittlesey, Kim
TI  - Normal all pseudo-Anosov subgroups of mapping class groups
JO  - Geometry & topology
PY  - 2000
SP  - 293
EP  - 307
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.293/
DO  - 10.2140/gt.2000.4.293
ID  - GT_2000_4_1_a9
ER  - 
%0 Journal Article
%A Whittlesey, Kim
%T Normal all pseudo-Anosov subgroups of mapping class groups
%J Geometry & topology
%D 2000
%P 293-307
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.293/
%R 10.2140/gt.2000.4.293
%F GT_2000_4_1_a9
Whittlesey, Kim. Normal all pseudo-Anosov subgroups of mapping class groups. Geometry & topology, Tome 4 (2000) no. 1, pp. 293-307. doi : 10.2140/gt.2000.4.293. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.293/

[1] J S Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies 82, Princeton University Press (1974)

[2] J S Birman, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math. 22 (1969) 213

[3] R D Edwards, R C Kirby, Deformations of spaces of imbeddings, Ann. Math. $(2)$ 93 (1971) 63

[4] A Fathi, F Laudenbach, V Poenaru, Travaux de Thurston sur les surfaces, Astérisque 66, Société Mathématique de France (1979) 284

[5] D L Johnson, Homeomorphisms of a surface which act trivially on homology, Proc. Amer. Math. Soc. 75 (1979) 119

[6] H Levinson, Decomposable braids and linkages, Trans. Amer. Math. Soc. 178 (1973) 111

[7] D D Long, A note on the normal subgroups of mapping class groups, Math. Proc. Cambridge Philos. Soc. 99 (1986) 79

[8] D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish (1976)

Cité par Sources :