Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The notion of a completely saturated packing [Monats. Math. 125 (1998) 127-145] is a sharper version of maximum density, and the analogous notion of a completely reduced covering is a sharper version of minimum density. We define two related notions: uniformly recurrent and weakly recurrent dense packings, and diffusively dominant packings. Every compact domain in Euclidean space has a uniformly recurrent dense packing. If the domain self-nests, such a packing is limit-equivalent to a completely saturated one. Diffusive dominance is yet sharper than complete saturation and leads to a better understanding of –saturation.
Kuperberg, Greg 1
@article{GT_2000_4_1_a8, author = {Kuperberg, Greg}, title = {Notions of denseness}, journal = {Geometry & topology}, pages = {277--292}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2000}, doi = {10.2140/gt.2000.4.277}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.277/} }
Kuperberg, Greg. Notions of denseness. Geometry & topology, Tome 4 (2000) no. 1, pp. 277-292. doi : 10.2140/gt.2000.4.277. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.277/
[1] Probable nature of the internal symmetry of crystals, Nature 29 (1883) 205
,[2] New bounds on sphere packings, PhD thesis, Harvard University (2000)
,[3] What are all the best sphere packings in low dimensions?, Discrete Comput. Geom. 13 (1995) 383
, ,[4] Highly saturated packings and reduced coverings, Monatsh. Math. 125 (1998) 127
, , ,[5] Solid circle-packings and circle-coverings, Studia Sci. Math. Hungar. 3 (1968) 401
,[6] Lagerungen in der Ebene auf der Kugel und im Raum, Die Grundlehren der mathematischen Wissenschaften 65, Springer (1972)
,[7] Existenzsätze für Lagerungen im Euklidischen Raum, Math. Z. 81 (1963) 260
,[8] Tilings and patterns, W. H. Freeman and Company (1987)
, ,[9] An overview of the Kepler conjecture,
,[10] Unending chess, symbolic dynamics and a problem in semigroups, Duke Math. J. 11 (1944) 1
, ,[11] Kepler's conjecture confirmed, Nature 395 (1998) 435
,[12] Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series 35, Princeton University Press (1997)
,Cité par Sources :