Notions of denseness
Geometry & topology, Tome 4 (2000) no. 1, pp. 277-292.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The notion of a completely saturated packing [Monats. Math. 125 (1998) 127-145] is a sharper version of maximum density, and the analogous notion of a completely reduced covering is a sharper version of minimum density. We define two related notions: uniformly recurrent and weakly recurrent dense packings, and diffusively dominant packings. Every compact domain in Euclidean space has a uniformly recurrent dense packing. If the domain self-nests, such a packing is limit-equivalent to a completely saturated one. Diffusive dominance is yet sharper than complete saturation and leads to a better understanding of n–saturation.

DOI : 10.2140/gt.2000.4.277
Keywords: density, saturation, packing, covering, dominance

Kuperberg, Greg 1

1 Department of Mathematics, University of California, One Shields Ave, Davis, California 95616-8633, USA
@article{GT_2000_4_1_a8,
     author = {Kuperberg, Greg},
     title = {Notions of denseness},
     journal = {Geometry & topology},
     pages = {277--292},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2000},
     doi = {10.2140/gt.2000.4.277},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.277/}
}
TY  - JOUR
AU  - Kuperberg, Greg
TI  - Notions of denseness
JO  - Geometry & topology
PY  - 2000
SP  - 277
EP  - 292
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.277/
DO  - 10.2140/gt.2000.4.277
ID  - GT_2000_4_1_a8
ER  - 
%0 Journal Article
%A Kuperberg, Greg
%T Notions of denseness
%J Geometry & topology
%D 2000
%P 277-292
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.277/
%R 10.2140/gt.2000.4.277
%F GT_2000_4_1_a8
Kuperberg, Greg. Notions of denseness. Geometry & topology, Tome 4 (2000) no. 1, pp. 277-292. doi : 10.2140/gt.2000.4.277. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.277/

[1] W Barlow, Probable nature of the internal symmetry of crystals, Nature 29 (1883) 205

[2] H Cohn, New bounds on sphere packings, PhD thesis, Harvard University (2000)

[3] J H Conway, N J A Sloane, What are all the best sphere packings in low dimensions?, Discrete Comput. Geom. 13 (1995) 383

[4] G Fejes Tóth, G Kuperberg, W Kuperberg, Highly saturated packings and reduced coverings, Monatsh. Math. 125 (1998) 127

[5] L Fejes Tóth, Solid circle-packings and circle-coverings, Studia Sci. Math. Hungar. 3 (1968) 401

[6] L Fejes Tóth, Lagerungen in der Ebene auf der Kugel und im Raum, Die Grundlehren der mathematischen Wissenschaften 65, Springer (1972)

[7] H Groemer, Existenzsätze für Lagerungen im Euklidischen Raum, Math. Z. 81 (1963) 260

[8] B Grünbaum, G C Shephard, Tilings and patterns, W. H. Freeman and Company (1987)

[9] T C Hales, An overview of the Kepler conjecture,

[10] M Morse, G A Hedlund, Unending chess, symbolic dynamics and a problem in semigroups, Duke Math. J. 11 (1944) 1

[11] N J A Sloane, Kepler's conjecture confirmed, Nature 395 (1998) 435

[12] W P Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series 35, Princeton University Press (1997)

Cité par Sources :