Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
It is a consequence of theorems of Gordon-Reid [J. Knot Theory Ram. 4 (1995) 389–409] and Thompson [Topology 36 (1997) 505–507] that a tunnel number one knot, if put in thin position, will also be in bridge position. We show that in such a thin presentation, the tunnel can be made level so that it lies in a level sphere. This settles a question raised by Morimoto [Bull. Fac. Eng. Takushoku Univ. 3 (1992) 219–225], who showed that the (now known) classification of unknotting tunnels for 2–bridge knots would follow quickly if it were known that any unknotting tunnel can be made level.
Goda, Hiroshi 1 ; Scharlemann, Martin 2 ; Thompson, Abigail 3
@article{GT_2000_4_1_a7, author = {Goda, Hiroshi and Scharlemann, Martin and Thompson, Abigail}, title = {Levelling an unknotting tunnel}, journal = {Geometry & topology}, pages = {243--275}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2000}, doi = {10.2140/gt.2000.4.243}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.243/} }
TY - JOUR AU - Goda, Hiroshi AU - Scharlemann, Martin AU - Thompson, Abigail TI - Levelling an unknotting tunnel JO - Geometry & topology PY - 2000 SP - 243 EP - 275 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.243/ DO - 10.2140/gt.2000.4.243 ID - GT_2000_4_1_a7 ER -
Goda, Hiroshi; Scharlemann, Martin; Thompson, Abigail. Levelling an unknotting tunnel. Geometry & topology, Tome 4 (2000) no. 1, pp. 243-275. doi : 10.2140/gt.2000.4.243. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.243/
[1] Embedding the exteriors of one-tunnel knots and links in the 3–Sphere, unpublished preprint
,[2] Foliations and the topology of 3–manifolds III, J. Differential Geom. 26 (1987) 479
,[3] On tangle decompositions of tunnel number one links, J. Knot Theory Ramifications 8 (1999) 299
, , ,[4] Tangle decompositions of tunnel number one knots and links, J. Knot Theory Ramifications 4 (1995) 389
, ,[5] Classification of unknotting tunnels for two bridge knots, from: "Proceedings of the Kirbyfest (Berkeley, CA, 1998)", Geom. Topol. Monogr. 2, Geom. Topol. Publ., Coventry (1999) 259
,[6] A note on unknotting tunnels for 2–bridge knots, Bull. Fac. Eng. Takushoku Univ. 3 (1992) 219
,[7] Planar surfaces in a handlebody and a theorem of Gordon–Reid, from: "KNOTS '96 (Tokyo)", World Sci. Publ., River Edge, NJ (1997) 123
,[8] Thin position and bridge number for knots in the 3–sphere, Topology 36 (1997) 505
,Cité par Sources :