Levelling an unknotting tunnel
Geometry & topology, Tome 4 (2000) no. 1, pp. 243-275.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

It is a consequence of theorems of Gordon-Reid [J. Knot Theory Ram. 4 (1995) 389–409] and Thompson [Topology 36 (1997) 505–507] that a tunnel number one knot, if put in thin position, will also be in bridge position. We show that in such a thin presentation, the tunnel can be made level so that it lies in a level sphere. This settles a question raised by Morimoto [Bull. Fac. Eng. Takushoku Univ. 3 (1992) 219–225], who showed that the (now known) classification of unknotting tunnels for 2–bridge knots would follow quickly if it were known that any unknotting tunnel can be made level.

DOI : 10.2140/gt.2000.4.243
Keywords: tunnel, unknotting tunnel, bridge position, thin position, Heegaard splitting

Goda, Hiroshi 1 ; Scharlemann, Martin 2 ; Thompson, Abigail 3

1 Graduate School of Science and Technology, Kobe University, Rokko, Kobe 657-8501, Japan
2 Mathematics Department, University of California, Santa Barbara, California 93106, USA
3 Mathematics Department, University of California, Davis, CA 95616, USA
@article{GT_2000_4_1_a7,
     author = {Goda, Hiroshi and Scharlemann, Martin and Thompson, Abigail},
     title = {Levelling an unknotting tunnel},
     journal = {Geometry & topology},
     pages = {243--275},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2000},
     doi = {10.2140/gt.2000.4.243},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.243/}
}
TY  - JOUR
AU  - Goda, Hiroshi
AU  - Scharlemann, Martin
AU  - Thompson, Abigail
TI  - Levelling an unknotting tunnel
JO  - Geometry & topology
PY  - 2000
SP  - 243
EP  - 275
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.243/
DO  - 10.2140/gt.2000.4.243
ID  - GT_2000_4_1_a7
ER  - 
%0 Journal Article
%A Goda, Hiroshi
%A Scharlemann, Martin
%A Thompson, Abigail
%T Levelling an unknotting tunnel
%J Geometry & topology
%D 2000
%P 243-275
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.243/
%R 10.2140/gt.2000.4.243
%F GT_2000_4_1_a7
Goda, Hiroshi; Scharlemann, Martin; Thompson, Abigail. Levelling an unknotting tunnel. Geometry & topology, Tome 4 (2000) no. 1, pp. 243-275. doi : 10.2140/gt.2000.4.243. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.243/

[1] J Berge, Embedding the exteriors of one-tunnel knots and links in the 3–Sphere, unpublished preprint

[2] D Gabai, Foliations and the topology of 3–manifolds III, J. Differential Geom. 26 (1987) 479

[3] H Goda, M Ozawa, M Teragaito, On tangle decompositions of tunnel number one links, J. Knot Theory Ramifications 8 (1999) 299

[4] C M Gordon, A W Reid, Tangle decompositions of tunnel number one knots and links, J. Knot Theory Ramifications 4 (1995) 389

[5] T Kobayashi, Classification of unknotting tunnels for two bridge knots, from: "Proceedings of the Kirbyfest (Berkeley, CA, 1998)", Geom. Topol. Monogr. 2, Geom. Topol. Publ., Coventry (1999) 259

[6] K Morimoto, A note on unknotting tunnels for 2–bridge knots, Bull. Fac. Eng. Takushoku Univ. 3 (1992) 219

[7] K Morimoto, Planar surfaces in a handlebody and a theorem of Gordon–Reid, from: "KNOTS '96 (Tokyo)", World Sci. Publ., River Edge, NJ (1997) 123

[8] A Thompson, Thin position and bridge number for knots in the 3–sphere, Topology 36 (1997) 505

Cité par Sources :