Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We provide, for hyperbolic and flat 3–manifolds, obstructions to bounding hyperbolic 4–manifolds, thus resolving in the negative a question of Farrell and Zdravkovska.
Long, Darren D 1 ; Reid, Alan W 2
@article{GT_2000_4_1_a4, author = {Long, Darren D and Reid, Alan W}, title = {On the geometric boundaries of hyperbolic 4{\textendash}manifolds}, journal = {Geometry & topology}, pages = {171--178}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2000}, doi = {10.2140/gt.2000.4.171}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.171/} }
TY - JOUR AU - Long, Darren D AU - Reid, Alan W TI - On the geometric boundaries of hyperbolic 4–manifolds JO - Geometry & topology PY - 2000 SP - 171 EP - 178 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.171/ DO - 10.2140/gt.2000.4.171 ID - GT_2000_4_1_a4 ER -
Long, Darren D; Reid, Alan W. On the geometric boundaries of hyperbolic 4–manifolds. Geometry & topology, Tome 4 (2000) no. 1, pp. 171-178. doi : 10.2140/gt.2000.4.171. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.171/
[1] Spectral asymmetry and Riemannian geometry, Bull. London Math. Soc. 5 (1973) 229
, , ,[2] Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43
, , ,[3] Tubular neighborhoods of totally geodesic hypersurfaces in hyperbolic manifolds, Invent. Math. 117 (1994) 207
,[4] Geometry of manifolds, Pure and Applied Mathematics XV, Academic Press (1964)
, ,[5] Gravitation, gauge theories and differential geometry, Phys. Rep. 66 (1980) 213
, , ,[6] Knots, homology spheres, and contractible 4–manifolds, Topology 14 (1975) 151
,[7] Tunnelling with a negative cosmological constant, Nuclear Phys. B 472 (1996) 683
,[8] The boundary integrand in the formula for the signature and Euler characteristic of a Riemannian manifold with boundary, Advances in Math. 15 (1975) 334
,[9] Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982)
,[10] Flat Riemannian manifolds are boundaries, Invent. Math. 66 (1982) 405
, ,[11] Do almost flat manifolds bound?, Michigan Math. J. 30 (1983) 199
, ,[12] All flat manifolds are cusps of hyperbolic orbifolds, Algebr. Geom. Topol. 2 (2002) 285
, ,[13] An asymptotic formula for the eta invariants of hyperbolic 3–manifolds, Comment. Math. Helv. 67 (1992) 28
, ,[14] All flat three-manifolds appear as cusps of hyperbolic four-manifolds, Topology Appl. 90 (1998) 109
,[15] Geometric invariants for Seifert fibred 3–manifolds, Trans. Amer. Math. Soc. 346 (1994) 641
,[16] Gravitational instantons of constant curvature, Classical Quantum Gravity 15 (1998) 2613
, ,[17] The volume spectrum of hyperbolic 4–manifolds, Experiment. Math. 9 (2000) 101
, ,[18] Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series 35, Princeton University Press (1997)
,[19] Topics on totally discontinuous groups, from: "Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970)", Pure and Appl. Math. 8, Dekker (1972) 459
,[20] Topological questions in cosmology, from: "Proceedings of the Oklahoma conference on computational topology", to appear
,Cité par Sources :