Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A self-transverse immersion of a smooth manifold in has a double point self-intersection set which is the image of an immersion of a smooth surface, the double point self-intersection surface. We prove that this surface may have odd Euler characteristic if and only if or is a power of 2. This corrects a previously published result by András Szűcs.
The method of proof is to evaluate the Stiefel–Whitney numbers of the double point self-intersection surface. By an earlier work of the authors, these numbers can be read off from the Hurewicz image of the element corresponding to the immersion under the Pontrjagin–Thom construction.
Asadi-Golmankhaneh, Mohammad A 1 ; Eccles, Peter J 2
@article{GT_2000_4_1_a3, author = {Asadi-Golmankhaneh, Mohammad A and Eccles, Peter J}, title = {Double point self-intersection surfaces of immersions}, journal = {Geometry & topology}, pages = {149--170}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2000}, doi = {10.2140/gt.2000.4.149}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.149/} }
TY - JOUR AU - Asadi-Golmankhaneh, Mohammad A AU - Eccles, Peter J TI - Double point self-intersection surfaces of immersions JO - Geometry & topology PY - 2000 SP - 149 EP - 170 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.149/ DO - 10.2140/gt.2000.4.149 ID - GT_2000_4_1_a3 ER -
Asadi-Golmankhaneh, Mohammad A; Eccles, Peter J. Double point self-intersection surfaces of immersions. Geometry & topology, Tome 4 (2000) no. 1, pp. 149-170. doi : 10.2140/gt.2000.4.149. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.149/
[1] Self-intersection manifolds of immersions, PhD thesis, University of Manchester (1998)
,[2] Determining the characteristic numbers of self-intersection manifolds, J. London Math. Soc. $(2)$ 62 (2000) 278
, ,[3] Triple points and surgery of immersed surfaces, Proc. Amer. Math. Soc. 46 (1974) 407
,[4] $\Gamma^{+}$–structures III: The stable structure of $\Omega^{\infty}\Sigma^{\infty}A$, Topology 13 (1974) 199
, ,[5] On Hopf invariants, Comment. Math. Helv. 42 (1967) 180
, ,[6] Immersions and embeddings up to cobordism, Canad. J. Math. 23 (1971) 1102
,[7] The immersion conjecture for differentiable manifolds, Ann. of Math. $(2)$ 122 (1985) 237
,[8] Erzeugende der Thomschen Algebra $\mathfrak{N}$, Math. Z. 65 (1956) 25
,[9] Homology of iterated loop spaces, Amer. J. Math. 84 (1962) 35
, ,[10] Multiple points of codimension one immersions of oriented manifolds, Math. Proc. Cambridge Philos. Soc. 87 (1980) 213
,[11] Codimension one immersions and the Kervaire invariant one problem, Math. Proc. Cambridge Philos. Soc. 90 (1981) 483
,[12] Characteristic numbers of immersions and self-intersection manifolds, from: "Topology with applications (Szekszárd, 1993)", Bolyai Soc. Math. Stud. 4, János Bolyai Math. Soc. (1995) 197
,[13] Double point manifolds of immersions of spheres in Euclidean space, from: "Prospects in topology (Princeton, NJ, 1994)", Ann. of Math. Stud. 138, Princeton Univ. Press (1995) 125
,[14] Bordism, stable homotopy and Adams spectral sequences, Fields Institute Monographs 7, American Mathematical Society (1996)
,[15] Self-intersections and higher Hopf invariants, Topology 17 (1978) 283
, ,[16] Sur les immersions de Boy, from: "Algebraic topology, Aarhus 1982 (Aarhus, 1982)", Lecture Notes in Math. 1051, Springer (1984) 263
,[17] The homology of iterated loop spaces, Lecture Notes in Mathematics 533, Springer (1976)
,[18] Characteristic classes, Annals of Mathematics Studies 76, Princeton University Press (1974)
, ,[19] A stable decomposition of $\Omega^{n}S^{n}X$, J. London Math. Soc. $(2)$ 7 (1974) 577
,[20] Cobordism groups of $l$–immersions I: Homotopy representability of the cobordism group of immersions with a given multiplicity of self-intersections, Acta Math. Acad. Sci. Hungar. 27 (1976) 343
,[21] Cobordism groups of $l$–immersions II, Acta Math. Acad. Sci. Hungar. 28 (1976) 93
,[22] Double point surfaces of smooth immersions $M^n\to\mathbb{R}^{2n-2}$, Math. Proc. Cambridge Philos. Soc. 113 (1993) 601
,[23] Cobordisme d'immersions, Ann. Sci. École Norm. Sup. $(4)$ 7 (1974)
,[24] Cobordism groups of immersions, Topology 5 (1966) 281
,Cité par Sources :