Double point self-intersection surfaces of immersions
Geometry & topology, Tome 4 (2000) no. 1, pp. 149-170.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A self-transverse immersion of a smooth manifold Mk+2 in 2k+2 has a double point self-intersection set which is the image of an immersion of a smooth surface, the double point self-intersection surface. We prove that this surface may have odd Euler characteristic if and only if k 1 mod 4 or k + 1 is a power of 2. This corrects a previously published result by András Szűcs.

The method of proof is to evaluate the Stiefel–Whitney numbers of the double point self-intersection surface. By an earlier work of the authors, these numbers can be read off from the Hurewicz image h(α) H2k+2ΩΣMO(k) of the element α π2k+2ΩΣMO(k) corresponding to the immersion under the Pontrjagin–Thom construction.

DOI : 10.2140/gt.2000.4.149
Keywords: immersion, Hurewicz homomorphism, spherical class, Hopf invariant, Stiefel–Whitney number

Asadi-Golmankhaneh, Mohammad A 1 ; Eccles, Peter J 2

1 Department of Mathematics, University of Urmia, PO Box 165, Urmia, Iran
2 Department of Mathematics, University of Manchester, Manchester, M13 9PL, United Kingdom
@article{GT_2000_4_1_a3,
     author = {Asadi-Golmankhaneh, Mohammad A and Eccles, Peter J},
     title = {Double point self-intersection surfaces of immersions},
     journal = {Geometry & topology},
     pages = {149--170},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2000},
     doi = {10.2140/gt.2000.4.149},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.149/}
}
TY  - JOUR
AU  - Asadi-Golmankhaneh, Mohammad A
AU  - Eccles, Peter J
TI  - Double point self-intersection surfaces of immersions
JO  - Geometry & topology
PY  - 2000
SP  - 149
EP  - 170
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.149/
DO  - 10.2140/gt.2000.4.149
ID  - GT_2000_4_1_a3
ER  - 
%0 Journal Article
%A Asadi-Golmankhaneh, Mohammad A
%A Eccles, Peter J
%T Double point self-intersection surfaces of immersions
%J Geometry & topology
%D 2000
%P 149-170
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.149/
%R 10.2140/gt.2000.4.149
%F GT_2000_4_1_a3
Asadi-Golmankhaneh, Mohammad A; Eccles, Peter J. Double point self-intersection surfaces of immersions. Geometry & topology, Tome 4 (2000) no. 1, pp. 149-170. doi : 10.2140/gt.2000.4.149. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.149/

[1] M A Asadi-Golmankhaneh, Self-intersection manifolds of immersions, PhD thesis, University of Manchester (1998)

[2] M A Asadi-Golmankhaneh, P J Eccles, Determining the characteristic numbers of self-intersection manifolds, J. London Math. Soc. $(2)$ 62 (2000) 278

[3] T F Banchoff, Triple points and surgery of immersed surfaces, Proc. Amer. Math. Soc. 46 (1974) 407

[4] M G Barratt, P J Eccles, $\Gamma^{+}$–structures III: The stable structure of $\Omega^{\infty}\Sigma^{\infty}A$, Topology 13 (1974) 199

[5] J M Boardman, B Steer, On Hopf invariants, Comment. Math. Helv. 42 (1967) 180

[6] R L W Brown, Immersions and embeddings up to cobordism, Canad. J. Math. 23 (1971) 1102

[7] R L Cohen, The immersion conjecture for differentiable manifolds, Ann. of Math. $(2)$ 122 (1985) 237

[8] A Dold, Erzeugende der Thomschen Algebra $\mathfrak{N}$, Math. Z. 65 (1956) 25

[9] E Dyer, R K Lashof, Homology of iterated loop spaces, Amer. J. Math. 84 (1962) 35

[10] P J Eccles, Multiple points of codimension one immersions of oriented manifolds, Math. Proc. Cambridge Philos. Soc. 87 (1980) 213

[11] P J Eccles, Codimension one immersions and the Kervaire invariant one problem, Math. Proc. Cambridge Philos. Soc. 90 (1981) 483

[12] P J Eccles, Characteristic numbers of immersions and self-intersection manifolds, from: "Topology with applications (Szekszárd, 1993)", Bolyai Soc. Math. Stud. 4, János Bolyai Math. Soc. (1995) 197

[13] P J Eccles, Double point manifolds of immersions of spheres in Euclidean space, from: "Prospects in topology (Princeton, NJ, 1994)", Ann. of Math. Stud. 138, Princeton Univ. Press (1995) 125

[14] S O Kochman, Bordism, stable homotopy and Adams spectral sequences, Fields Institute Monographs 7, American Mathematical Society (1996)

[15] U Koschorke, B Sanderson, Self-intersections and higher Hopf invariants, Topology 17 (1978) 283

[16] J Lannes, Sur les immersions de Boy, from: "Algebraic topology, Aarhus 1982 (Aarhus, 1982)", Lecture Notes in Math. 1051, Springer (1984) 263

[17] J P May, The homology of iterated loop spaces, Lecture Notes in Mathematics 533, Springer (1976)

[18] J W Milnor, J D Stasheff, Characteristic classes, Annals of Mathematics Studies 76, Princeton University Press (1974)

[19] V P Snaith, A stable decomposition of $\Omega^{n}S^{n}X$, J. London Math. Soc. $(2)$ 7 (1974) 577

[20] A Sjuč, Cobordism groups of $l$–immersions I: Homotopy representability of the cobordism group of immersions with a given multiplicity of self-intersections, Acta Math. Acad. Sci. Hungar. 27 (1976) 343

[21] A Sjuč, Cobordism groups of $l$–immersions II, Acta Math. Acad. Sci. Hungar. 28 (1976) 93

[22] A Szűcs, Double point surfaces of smooth immersions $M^n\to\mathbb{R}^{2n-2}$, Math. Proc. Cambridge Philos. Soc. 113 (1993) 601

[23] P Vogel, Cobordisme d'immersions, Ann. Sci. École Norm. Sup. $(4)$ 7 (1974)

[24] R Wells, Cobordism groups of immersions, Topology 5 (1966) 281

Cité par Sources :