Claspers and finite type invariants of links
Geometry & topology, Tome 4 (2000) no. 1, pp. 1-83.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce the concept of “claspers,” which are surfaces in 3–manifolds with some additional structure on which surgery operations can be performed. Using claspers we define for each positive integer k an equivalence relation on links called “Ck–equivalence,” which is generated by surgery operations of a certain kind called “Ck–moves”. We prove that two knots in the 3–sphere are Ck+1–equivalent if and only if they have equal values of Vassiliev–Goussarov invariants of type k with values in any abelian groups. This result gives a characterization in terms of surgery operations of the informations that can be carried by Vassiliev–Goussarov invariants. In the last section we also describe outlines of some applications of claspers to other fields in 3–dimensional topology.

DOI : 10.2140/gt.2000.4.1
Keywords: Vassiliev–Goussarov invariant, clasper, link, string link

Habiro, Kazuo 1

1 Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba Meguro-ku, Tokyo 153, Japan
@article{GT_2000_4_1_a0,
     author = {Habiro, Kazuo},
     title = {Claspers and finite type invariants of links},
     journal = {Geometry & topology},
     pages = {1--83},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2000},
     doi = {10.2140/gt.2000.4.1},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.1/}
}
TY  - JOUR
AU  - Habiro, Kazuo
TI  - Claspers and finite type invariants of links
JO  - Geometry & topology
PY  - 2000
SP  - 1
EP  - 83
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.1/
DO  - 10.2140/gt.2000.4.1
ID  - GT_2000_4_1_a0
ER  - 
%0 Journal Article
%A Habiro, Kazuo
%T Claspers and finite type invariants of links
%J Geometry & topology
%D 2000
%P 1-83
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.1/
%R 10.2140/gt.2000.4.1
%F GT_2000_4_1_a0
Habiro, Kazuo. Claspers and finite type invariants of links. Geometry & topology, Tome 4 (2000) no. 1, pp. 1-83. doi : 10.2140/gt.2000.4.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2000.4.1/

[1] D Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423

[2] D Bar-Natan, Vassiliev homotopy string link invariants, J. Knot Theory Ramifications 4 (1995) 13

[3] J S Birman, New points of view in knot theory, Bull. Amer. Math. Soc. $($N.S.$)$ 28 (1993) 253

[4] J S Birman, X S Lin, Knot polynomials and Vassiliev's invariants, Invent. Math. 111 (1993) 225

[5] T D Cochran, Derivatives of links: Milnor's concordance invariants and Massey's products, Mem. Amer. Math. Soc. 84 (1990)

[6] T D Cochran, A Gerges, K Orr, Dehn surgery equivalence relations on 3–manifolds, Math. Proc. Cambridge Philos. Soc. 131 (2001) 97

[7] T D Cochran, P Melvin, Finite type invariants of 3–manifolds, Invent. Math. 140 (2000) 45

[8] L Crane, D Yetter, On algebraic structures implicit in topological quantum field theories, J. Knot Theory Ramifications 8 (1999) 125

[9] M H Freedman, P Teichner, 4–manifold topology II: Dwyer's filtration and surgery kernels, Invent. Math. 122 (1995) 531

[10] S Garoufalidis, N Habegger, The Alexander polynomial and finite type 3–manifold invariants, Math. Ann. 316 (2000) 485

[11] S Garoufalidis, J Levine, Finite type 3–manifold invariants, the mapping class group and blinks, J. Differential Geom. 47 (1997) 257

[12] S Garoufalidis, T Ohtsuki, On finite type 3–manifold invariants III: Manifold weight systems, Topology 37 (1998) 227

[13] M N Goussarov, A new form of the Conway–Jones polynomial of oriented links, from: "Topology of manifolds and varieties", Adv. Soviet Math. 18, Amer. Math. Soc. (1994) 167

[14] M N Goussarov, On $n$–equivalence of knots and invariants of finite degree, from: "Topology of manifolds and varieties", Adv. Soviet Math. 18, Amer. Math. Soc. (1994) 173

[15] M N Goussarov, Interdependent modifications of links and invariants of finite degree, Topology 37 (1998) 595

[16] M N Goussarov, New theory of invariants of finite degree for 3–manifolds, preprint

[17] N Habegger, A computation of the universal quantum 3–manifold invariant for manifolds of rank greater than 2, preprint

[18] N Habegger, X S Lin, The classification of links up to link-homotopy, J. Amer. Math. Soc. 3 (1990) 389

[19] N Habegger, G Masbaum, The Kontsevich integral and Milnor's invariants, Topology 39 (2000) 1253

[20] K Habiro, Claspers and the Vassiliev skein modules, PhD thesis, University of Tokyo (1997)

[21] K Habiro, Clasp-pass moves on knots, unpublished

[22] R Hain, Infinitesimal presentations of the Torelli groups, J. Amer. Math. Soc. 10 (1997) 597

[23] D Johnson, An abelian quotient of the mapping class group $\mathcal{I}_g$, Math. Ann. 249 (1980) 225

[24] T Kerler, Genealogy of non-perturbative quantum-invariants of 3–manifolds: the surgical family, from: "Geometry and physics (Aarhus, 1995)", Lecture Notes in Pure and Appl. Math. 184, Dekker (1997) 503

[25] T Kerler, Bridged links and tangle presentations of cobordism categories, Adv. Math. 141 (1999) 207

[26] R Kirby, A calculus for framed links in $S^3$, Invent. Math. 45 (1978) 35

[27] T Kohno, Vassiliev invariants and de Rham complex on the space of knots, from: "Symplectic geometry and quantization (Sanda and Yokohama, 1993)", Contemp. Math. 179, Amer. Math. Soc. (1994) 123

[28] M Kontsevich, Vassiliev's knot invariants, from: "I. M. Gel'fand Seminar", Adv. Soviet Math. 16, Amer. Math. Soc. (1993) 137

[29] V S Krushkal, Additivity properties of Milnor's $\bar{\mu}$–invariants, J. Knot Theory Ramifications 7 (1998) 625

[30] T T Q Le, An invariant of integral homology 3–spheres which is universal for all finite type invariants, from: "Solitons, geometry, and topology: on the crossroad", Amer. Math. Soc. Transl. Ser. 2 179, Amer. Math. Soc. (1997) 75

[31] T T Q Le, J Murakami, T Ohtsuki, On a universal perturbative invariant of 3–manifolds, Topology 37 (1998) 539

[32] X S Lin, Power series expansions and invariants of links, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 184

[33] S Majid, Algebras and Hopf algebras in braided categories, from: "Advances in Hopf algebras (Chicago, IL, 1992)", Lecture Notes in Pure and Appl. Math. 158, Dekker (1994) 55

[34] S Majid, Foundations of quantum group theory, Cambridge University Press (1995)

[35] S V Matveev, Generalized surgeries of three-dimensional manifolds and representations of homology spheres, Mat. Zametki 42 (1987) 268, 345

[36] J Milnor, Link groups, Ann. of Math. $(2)$ 59 (1954) 177

[37] J Milnor, Isotopy of links. Algebraic geometry and topology, from: "A symposium in honor of S. Lefschetz", Princeton University Press (1957) 280

[38] S Morita, Casson's invariant for homology 3–spheres and characteristic classes of surface bundles I, Topology 28 (1989) 305

[39] S Morita, Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math. J. 70 (1993) 699

[40] H Murakami, Y Nakanishi, On a certain move generating link-homology, Math. Ann. 284 (1989) 75

[41] K Y Ng, Groups of ribbon knots, Topology 37 (1998) 441

[42] T Ohtsuki, Finite type invariants of integral homology 3–spheres, J. Knot Theory Ramifications 5 (1996) 101

[43] T Stanford, Finite-type invariants of knots, links, and graphs, Topology 35 (1996) 1027

[44] T Stanford, Braid commutators and Vassiliev invariants, Pacific J. Math. 174 (1996) 269

[45] T Stanford, Vassiliev invariants and knots modulo pure braid subgroups, preprint

[46] V A Vassiliev, Cohomology of knot spaces, from: "Theory of singularities and its applications", Adv. Soviet Math. 1, Amer. Math. Soc. (1990) 23

Cité par Sources :