Embeddings from the point of view of immersion theory : Part I
Geometry & topology, Tome 3 (1999) no. 1, pp. 67-101.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let M and N be smooth manifolds without boundary. Immersion theory suggests that an understanding of the space of smooth embeddings emb(M,N) should come from an analysis of the cofunctor V emb(V,N) from the poset O of open subsets of M to spaces. We therefore abstract some of the properties of this cofunctor, and develop a suitable calculus of such cofunctors, Goodwillie style, with Taylor series and so on. The terms of the Taylor series for the cofunctor V emb(V,N) are explicitly determined. In a sequel to this paper, we introduce the concept of an analytic cofunctor from to spaces, and show that the Taylor series of an analytic cofunctor F converges to F. Deep excision theorems due to Goodwillie and Goodwillie–Klein imply that the cofunctor V emb(V,N) is analytic when dim(N) dim(M) 3.

DOI : 10.2140/gt.1999.3.67
Keywords: Embedding, immersion, calculus of functors

Weiss, Michael 1

1 Department of Mathematics, University of Aberdeen, Aberdeen, AB24 3UE, United Kingdom
@article{GT_1999_3_1_a2,
     author = {Weiss, Michael},
     title = {Embeddings from the point of view of immersion theory : {Part} {I}},
     journal = {Geometry & topology},
     pages = {67--101},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     doi = {10.2140/gt.1999.3.67},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.67/}
}
TY  - JOUR
AU  - Weiss, Michael
TI  - Embeddings from the point of view of immersion theory : Part I
JO  - Geometry & topology
PY  - 1999
SP  - 67
EP  - 101
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.67/
DO  - 10.2140/gt.1999.3.67
ID  - GT_1999_3_1_a2
ER  - 
%0 Journal Article
%A Weiss, Michael
%T Embeddings from the point of view of immersion theory : Part I
%J Geometry & topology
%D 1999
%P 67-101
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.67/
%R 10.2140/gt.1999.3.67
%F GT_1999_3_1_a2
Weiss, Michael. Embeddings from the point of view of immersion theory : Part I. Geometry & topology, Tome 3 (1999) no. 1, pp. 67-101. doi : 10.2140/gt.1999.3.67. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.67/

[1] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics 304, Springer (1972)

[2] A Dold, Lectures on algebraic topology, Die Grundlehren der mathematischen Wissenschaften 200, Springer (1972)

[3] W G Dwyer, The centralizer decomposition of $BG$, from: "Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guíxols, 1994)", Progr. Math. 136, Birkhäuser (1996) 167

[4] W G Dwyer, D M Kan, A classification theorem for diagrams of simplicial sets, Topology 23 (1984) 139

[5] W Dwyer, M Weiss, B Williams, A parametrized index theorem for the algebraic $K$–theory Euler class, Acta Math. 190 (2003) 1

[6] T G Goodwillie, Calculus I: The first derivative of pseudoisotopy theory, $K$–Theory 4 (1990) 1

[7] T G Goodwillie, Calculus II: Analytic functors, $K$–Theory 5 (1991/92) 295

[8] T G Goodwillie, Calculus III: Taylor series, Geom. Topol. 7 (2003) 645

[9] T G Goodwillie, A multiple disjunction lemma for smooth concordance embeddings, Mem. Amer. Math. Soc. 86 (1990)

[10] T G Goodwillie, Excision estimates for spaces of homotopy equivalences, preprint (1995)

[11] T G Goodwillie, Excision estimates for spaces of diffeomorphisms, preprint (1998)

[12] T G Goodwillie, J Klein, Excision estimates for spaces of Poincaré embeddings, in preparation

[13] T G Goodwillie, M Weiss, Embeddings from the point of view of immersion theory II, Geom. Topol. 3 (1999) 103

[14] M L Gromov, Stable mappings of foliations into manifolds, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969) 707

[15] A Haefliger, V Poenaru, La classification des immersions combinatoires, Inst. Hautes Études Sci. Publ. Math. (1964) 75

[16] R C Kirby, L C Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies 88, Princeton University Press (1977)

[17] S Macnbsp;Lane, Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer (1971)

[18] S Macnbsp;Lane, I Moerdijk, Sheaves in geometry and logic, Universitext, Springer (1994)

[19] V Poénaru, Homotopy theory and differentiable singularities, from: "Manifolds–Amsterdam 1970 (Proc. Nuffic Summer School)", Lecture Notes in Mathematics 197, Springer (1971) 106

[20] G Segal, Classifying spaces related to foliations, Topology 17 (1978) 367

[21] R W Thomason, Homotopy colimits in the category of small categories, Math. Proc. Cambridge Philos. Soc. 85 (1979) 91

[22] F Waldhausen, Algebraic $K$–theory of spaces, from: "Algebraic and geometric topology (New Brunswick, N.J., 1983)", Lecture Notes in Math. 1126, Springer (1985) 318

[23] M Weiss, Calculus of embeddings, Bull. Amer. Math. Soc. $($N.S.$)$ 33 (1996) 177

[24] M Weiss, Curvature and finite domination, Proc. Amer. Math. Soc. 124 (1996) 615

[25] M Weiss, Orthogonal calculus, Trans. Amer. Math. Soc. 347 (1995) 3743

Cité par Sources :