Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let and be smooth manifolds without boundary. Immersion theory suggests that an understanding of the space of smooth embeddings should come from an analysis of the cofunctor from the poset of open subsets of to spaces. We therefore abstract some of the properties of this cofunctor, and develop a suitable calculus of such cofunctors, Goodwillie style, with Taylor series and so on. The terms of the Taylor series for the cofunctor are explicitly determined. In a sequel to this paper, we introduce the concept of an analytic cofunctor from to spaces, and show that the Taylor series of an analytic cofunctor converges to . Deep excision theorems due to Goodwillie and Goodwillie–Klein imply that the cofunctor is analytic when .
Weiss, Michael 1
@article{GT_1999_3_1_a2, author = {Weiss, Michael}, title = {Embeddings from the point of view of immersion theory : {Part} {I}}, journal = {Geometry & topology}, pages = {67--101}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {1999}, doi = {10.2140/gt.1999.3.67}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.67/} }
Weiss, Michael. Embeddings from the point of view of immersion theory : Part I. Geometry & topology, Tome 3 (1999) no. 1, pp. 67-101. doi : 10.2140/gt.1999.3.67. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.67/
[1] Homotopy limits, completions and localizations, Lecture Notes in Mathematics 304, Springer (1972)
, ,[2] Lectures on algebraic topology, Die Grundlehren der mathematischen Wissenschaften 200, Springer (1972)
,[3] The centralizer decomposition of $BG$, from: "Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guíxols, 1994)", Progr. Math. 136, Birkhäuser (1996) 167
,[4] A classification theorem for diagrams of simplicial sets, Topology 23 (1984) 139
, ,[5] A parametrized index theorem for the algebraic $K$–theory Euler class, Acta Math. 190 (2003) 1
, , ,[6] Calculus I: The first derivative of pseudoisotopy theory, $K$–Theory 4 (1990) 1
,[7] Calculus II: Analytic functors, $K$–Theory 5 (1991/92) 295
,[8] Calculus III: Taylor series, Geom. Topol. 7 (2003) 645
,[9] A multiple disjunction lemma for smooth concordance embeddings, Mem. Amer. Math. Soc. 86 (1990)
,[10] Excision estimates for spaces of homotopy equivalences, preprint (1995)
,[11] Excision estimates for spaces of diffeomorphisms, preprint (1998)
,[12] Excision estimates for spaces of Poincaré embeddings, in preparation
, ,[13] Embeddings from the point of view of immersion theory II, Geom. Topol. 3 (1999) 103
, ,[14] Stable mappings of foliations into manifolds, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969) 707
,[15] La classification des immersions combinatoires, Inst. Hautes Études Sci. Publ. Math. (1964) 75
, ,[16] Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies 88, Princeton University Press (1977)
, ,[17] Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer (1971)
,[18] Sheaves in geometry and logic, Universitext, Springer (1994)
, ,[19] Homotopy theory and differentiable singularities, from: "Manifolds–Amsterdam 1970 (Proc. Nuffic Summer School)", Lecture Notes in Mathematics 197, Springer (1971) 106
,[20] Classifying spaces related to foliations, Topology 17 (1978) 367
,[21] Homotopy colimits in the category of small categories, Math. Proc. Cambridge Philos. Soc. 85 (1979) 91
,[22] Algebraic $K$–theory of spaces, from: "Algebraic and geometric topology (New Brunswick, N.J., 1983)", Lecture Notes in Math. 1126, Springer (1985) 318
,[23] Calculus of embeddings, Bull. Amer. Math. Soc. $($N.S.$)$ 33 (1996) 177
,[24] Curvature and finite domination, Proc. Amer. Math. Soc. 124 (1996) 615
,[25] Orthogonal calculus, Trans. Amer. Math. Soc. 347 (1995) 3743
,Cité par Sources :