An elementary approach to the mapping class group of a surface
Geometry & topology, Tome 3 (1999) no. 1, pp. 405-466.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We consider an oriented surface S and a cellular complex X of curves on S, defined by Hatcher and Thurston in 1980. We prove by elementary means, without Cerf theory, that the complex X is connected and simply connected. From this we derive an explicit simple presentation of the mapping class group of S, following the ideas of Hatcher–Thurston and Harer.

DOI : 10.2140/gt.1999.3.405
Keywords: mapping class group, surface, curve complex, group presentation

Wajnryb, Bronisław 1

1 Department of Mathematics, Technion, 32000 Haifa, Israel
@article{GT_1999_3_1_a16,
     author = {Wajnryb, Bronis{\l}aw},
     title = {An elementary approach to the mapping class group of a surface},
     journal = {Geometry & topology},
     pages = {405--466},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     doi = {10.2140/gt.1999.3.405},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.405/}
}
TY  - JOUR
AU  - Wajnryb, Bronisław
TI  - An elementary approach to the mapping class group of a surface
JO  - Geometry & topology
PY  - 1999
SP  - 405
EP  - 466
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.405/
DO  - 10.2140/gt.1999.3.405
ID  - GT_1999_3_1_a16
ER  - 
%0 Journal Article
%A Wajnryb, Bronisław
%T An elementary approach to the mapping class group of a surface
%J Geometry & topology
%D 1999
%P 405-466
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.405/
%R 10.2140/gt.1999.3.405
%F GT_1999_3_1_a16
Wajnryb, Bronisław. An elementary approach to the mapping class group of a surface. Geometry & topology, Tome 3 (1999) no. 1, pp. 405-466. doi : 10.2140/gt.1999.3.405. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.405/

[1] J S Birman, H M Hilden, On the mapping class groups of closed surfaces as covering spaces, from: "Advances in the theory of Riemann surfaces (Proc. Conf., Stony Brook, N.Y., 1969)", Ann. of Math. Studies 66, Princeton Univ. Press (1971) 81

[2] J S Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies 82, Princeton University Press (1974)

[3] J S Birman, B Wajnryb, Errata: Presentations of the mapping class group, Israel J. Math. 88 (1994) 425

[4] J Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. (1970) 5

[5] M Dehn, Die Gruppe der Abbildungsklassen, Acta Math. 69 (1938) 135

[6] S Gervais, A finite presentation of the mapping class group of an oriented surface, preprint

[7] J Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983) 221

[8] J Hass, P Scott, Intersections of curves on surfaces, Israel J. Math. 51 (1985) 90

[9] A Hatcher, W Thurston, A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980) 221

[10] M Heusner, Eine Präsentation der Abbildungsklassengruppe einer geschlossenen, orientierbaren Fläche, Diplomarbeit, University of Frankfurt

[11] S P Humphries, Generators for the mapping class group, from: "Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977)", Lecture Notes in Math. 722, Springer (1979) 44

[12] D L Johnson, Homeomorphisms of a surface which act trivially on homology, Proc. Amer. Math. Soc. 75 (1979) 119

[13] R Kirby, A calculus for framed links in $S^3$, Invent. Math. 45 (1978) 35

[14] T Kohno, Topological invariants for 3–manifolds using representations of mapping class groups I, Topology 31 (1992) 203

[15] , Travaux de Thurston sur les surfaces, Astérisque 66, Société Mathématique de France (1979) 284

[16] N Lu, A simple proof of the fundamental theorem of Kirby calculus on links, Trans. Amer. Math. Soc. 331 (1992) 143

[17] M Matsumoto, A presentation of mapping class groups in terms of Artin groups and geometric monodromy of singularities, Math. Ann. 316 (2000) 401

[18] S Matveev, M Polyak, On a tangle presentation of the mapping class groups of surfaces, from: "Geometric topology (Haifa, 1992)", Contemp. Math. 164, Amer. Math. Soc. (1994) 219

[19] J Mccool, Some finitely presented subgroups of the automorphism group of a free group, J. Algebra 35 (1975) 205

[20] B Wajnryb, A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983) 157

Cité par Sources :