The Burau representation is not faithful for n = 5
Geometry & topology, Tome 3 (1999) no. 1, pp. 397-404.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The Burau representation is a natural action of the braid group Bn on the free [t,t1]–module of rank n 1. It is a longstanding open problem to determine for which values of n this representation is faithful. It is known to be faithful for n = 3. Moody has shown that it is not faithful for n 9 and Long and Paton improved on Moody’s techniques to bring this down to n 6. Their construction uses a simple closed curve on the 6–punctured disc with certain homological properties. In this paper we give such a curve on the 5–punctured disc, thus proving that the Burau representation is not faithful for n 5.

DOI : 10.2140/gt.1999.3.397
Keywords: braid group, Burau representation

Bigelow, Stephen 1

1 Department of Mathematics, University of California at Berkeley, Berkeley, California 94720, USA
@article{GT_1999_3_1_a15,
     author = {Bigelow, Stephen},
     title = {The {Burau} representation is not faithful for n = 5},
     journal = {Geometry & topology},
     pages = {397--404},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     doi = {10.2140/gt.1999.3.397},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.397/}
}
TY  - JOUR
AU  - Bigelow, Stephen
TI  - The Burau representation is not faithful for n = 5
JO  - Geometry & topology
PY  - 1999
SP  - 397
EP  - 404
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.397/
DO  - 10.2140/gt.1999.3.397
ID  - GT_1999_3_1_a15
ER  - 
%0 Journal Article
%A Bigelow, Stephen
%T The Burau representation is not faithful for n = 5
%J Geometry & topology
%D 1999
%P 397-404
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.397/
%R 10.2140/gt.1999.3.397
%F GT_1999_3_1_a15
Bigelow, Stephen. The Burau representation is not faithful for n = 5. Geometry & topology, Tome 3 (1999) no. 1, pp. 397-404. doi : 10.2140/gt.1999.3.397. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.397/

[1] J S Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies 82, Princeton University Press (1974)

[2] , Travaux de Thurston sur les surfaces, Astérisque 66, Société Mathématique de France (1979) 284

[3] D D Long, M Paton, The Burau representation is not faithful for $n\geq 6$, Topology 32 (1993) 439

[4] J A Moody, The Burau representation of the braid group $B_n$ is unfaithful for large $n$, Bull. Amer. Math. Soc. $($N.S.$)$ 25 (1991) 379

Cité par Sources :