Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a closed manifold with , and let be a circle-valued Morse function. We define an invariant which counts closed orbits of the gradient of , together with flow lines between the critical points. We show that our invariant equals a form of topological Reidemeister torsion defined by Turaev [Math. Res. Lett. 4 (1997) 679–695].
We proved a similar result in our previous paper [Topology 38 (1999) 861–888], but the present paper refines this by separating closed orbits and flow lines according to their homology classes. (Previously we only considered their intersection numbers with a fixed level set.) The proof here is independent of the previous proof, and also simpler.
Aside from its Morse-theoretic interest, this work is motivated by the fact that when is three-dimensional and , the invariant equals a counting invariant which was conjectured in our previous paper to equal the Seiberg–Witten invariant of . Our result, together with this conjecture, implies that the Seiberg–Witten invariant equals the Turaev torsion. This was conjectured by Turaev and refines the theorem of Meng and Taubes [Math. Res. Lett 3 (1996) 661–674].
Hutchings, Michael 1 ; Lee, Yi-Jen 2
@article{GT_1999_3_1_a14, author = {Hutchings, Michael and Lee, Yi-Jen}, title = {Circle-valued {Morse} theory and {Reidemeister} torsion}, journal = {Geometry & topology}, pages = {369--396}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {1999}, doi = {10.2140/gt.1999.3.369}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.369/} }
TY - JOUR AU - Hutchings, Michael AU - Lee, Yi-Jen TI - Circle-valued Morse theory and Reidemeister torsion JO - Geometry & topology PY - 1999 SP - 369 EP - 396 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.369/ DO - 10.2140/gt.1999.3.369 ID - GT_1999_3_1_a14 ER -
Hutchings, Michael; Lee, Yi-Jen. Circle-valued Morse theory and Reidemeister torsion. Geometry & topology, Tome 3 (1999) no. 1, pp. 369-396. doi : 10.2140/gt.1999.3.369. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.369/
[1] The Lefschetz fixed point theorem, Scott, Foresman and Co. (1971)
,[2] Homological identities for closed orbits, Invent. Math. 71 (1983) 419
,[3] Lefschetz formulas for flows, from: "The Lefschetz centennial conference, Part III (Mexico City, 1984)", Contemp. Math. 58, Amer. Math. Soc. (1987) 19
,[4] The symplectic $s$–cobordism conjecture: a summary, from: "Geometry and physics (Aarhus, 1995)", Lecture Notes in Pure and Appl. Math. 184, Dekker (1997) 209
,[5] Floer homology and Novikov rings, from: "The Floer memorial volume", Progr. Math. 133, Birkhäuser (1995) 483
, ,[6] Reidemeister torsion in generalized Morse theory, Forum Math. 14 (2002) 209
,[7] Circle-valued Morse theory, Reidemeister torsion, and Seiberg–Witten invariants of 3–manifolds, Topology 38 (1999) 861
, ,[8] Gromov invariants and symplectic maps, Math. Ann. 314 (1999) 127
, ,[9] The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994) 797
, ,[10] Existence de 1–formes fermées non singulières dans une classe de cohomologie de de Rham, Inst. Hautes Études Sci. Publ. Math. (1994)
,[11] An extension of a theorem by Cheeger and Müller, Astérisque (1992) 235
, ,[12] Morse theory and Seiberg–Witten monopoles on 3–manifolds, PhD thesis, Harvard University (1997)
,[13] Seiberg–Witten theory of 3–manifolds, preprint (1996)
,[14] $\underline{\mathrm{SW}}=\mathrm{Milnor torsion}$, Math. Res. Lett. 3 (1996) 661
, ,[15] Infinite cyclic coverings, from: "Collected works vol. 2", Publish or Perish (1996)
,[16] Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358
,[17] Multivalued functions and functionals. An analogue of the Morse theory, Dokl. Akad. Nauk SSSR 260 (1981) 31
,[18] 3–dimensional Seiberg–Witten invariants and non-Kählerian geometry, Math. Ann. 312 (1998) 261
, ,[19] On the Novikov complex for rational Morse forms, Ann. Fac. Sci. Toulouse Math. $(6)$ 4 (1995) 297
,[20] Simple homotopy type of Novikov complex for closed 1–forms and Lefschetz zeta functions of the gradient flow,
,[21] Floer homology, Novikov rings, and clean intersections, PhD thesis, University of Warwick (1994)
,[22] Seiberg–Witten invariants of mapping tori, symplectic fixed points, and Lefschetz numbers, from: "Proceedings of 6th Gökova Geometry–Topology Conference" (1999) 117
,[23] Algebraic topology, Springer (1981)
,[24] The Seiberg–Witten and Gromov invariants, Math. Res. Lett. 2 (1995) 221
,[25] Counting pseudo-holomorphic submanifolds in dimension $4$, J. Differential Geom. 44 (1996) 818
,[26] Reidemeister torsion in knot theory, Uspekhi Mat. Nauk 41 (1986) 97, 240
,[27] Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 607, 672
,[28] Torsion invariants of $\mathrm{Spin}^c$–structures on 3–manifolds, Math. Res. Lett. 4 (1997) 679
,[29] A combinatorial formulation for the Seiberg–Witten invariants of 3–manifolds, Math. Res. Lett. 5 (1998) 583
,[30] Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949) 497
,Cité par Sources :