Circle-valued Morse theory and Reidemeister torsion
Geometry & topology, Tome 3 (1999) no. 1, pp. 369-396.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let X be a closed manifold with χ(X) = 0, and let f : X S1 be a circle-valued Morse function. We define an invariant I which counts closed orbits of the gradient of f, together with flow lines between the critical points. We show that our invariant equals a form of topological Reidemeister torsion defined by Turaev [Math. Res. Lett. 4 (1997) 679–695].

We proved a similar result in our previous paper [Topology 38 (1999) 861–888], but the present paper refines this by separating closed orbits and flow lines according to their homology classes. (Previously we only considered their intersection numbers with a fixed level set.) The proof here is independent of the previous proof, and also simpler.

Aside from its Morse-theoretic interest, this work is motivated by the fact that when X is three-dimensional and b1(X) > 0, the invariant I equals a counting invariant I3(X) which was conjectured in our previous paper to equal the Seiberg–Witten invariant of X. Our result, together with this conjecture, implies that the Seiberg–Witten invariant equals the Turaev torsion. This was conjectured by Turaev and refines the theorem of Meng and Taubes [Math. Res. Lett 3 (1996) 661–674].

DOI : 10.2140/gt.1999.3.369
Keywords: Morse–Novikov complex, Reidemeister torsion, Seiberg–Witten invariants

Hutchings, Michael 1 ; Lee, Yi-Jen 2

1 Department of Mathematics, Stanford University, Stanford, California 94305, USA
2 Department of Mathematics, Princeton University, Princeton, New Jersey 08544, USA
@article{GT_1999_3_1_a14,
     author = {Hutchings, Michael and Lee, Yi-Jen},
     title = {Circle-valued {Morse} theory and {Reidemeister} torsion},
     journal = {Geometry & topology},
     pages = {369--396},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     doi = {10.2140/gt.1999.3.369},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.369/}
}
TY  - JOUR
AU  - Hutchings, Michael
AU  - Lee, Yi-Jen
TI  - Circle-valued Morse theory and Reidemeister torsion
JO  - Geometry & topology
PY  - 1999
SP  - 369
EP  - 396
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.369/
DO  - 10.2140/gt.1999.3.369
ID  - GT_1999_3_1_a14
ER  - 
%0 Journal Article
%A Hutchings, Michael
%A Lee, Yi-Jen
%T Circle-valued Morse theory and Reidemeister torsion
%J Geometry & topology
%D 1999
%P 369-396
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.369/
%R 10.2140/gt.1999.3.369
%F GT_1999_3_1_a14
Hutchings, Michael; Lee, Yi-Jen. Circle-valued Morse theory and Reidemeister torsion. Geometry & topology, Tome 3 (1999) no. 1, pp. 369-396. doi : 10.2140/gt.1999.3.369. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.369/

[1] R F Brown, The Lefschetz fixed point theorem, Scott, Foresman and Co. (1971)

[2] D Fried, Homological identities for closed orbits, Invent. Math. 71 (1983) 419

[3] D Fried, Lefschetz formulas for flows, from: "The Lefschetz centennial conference, Part III (Mexico City, 1984)", Contemp. Math. 58, Amer. Math. Soc. (1987) 19

[4] K Fukaya, The symplectic $s$–cobordism conjecture: a summary, from: "Geometry and physics (Aarhus, 1995)", Lecture Notes in Pure and Appl. Math. 184, Dekker (1997) 209

[5] H Hofer, D A Salamon, Floer homology and Novikov rings, from: "The Floer memorial volume", Progr. Math. 133, Birkhäuser (1995) 483

[6] M Hutchings, Reidemeister torsion in generalized Morse theory, Forum Math. 14 (2002) 209

[7] M Hutchings, Y J Lee, Circle-valued Morse theory, Reidemeister torsion, and Seiberg–Witten invariants of 3–manifolds, Topology 38 (1999) 861

[8] E N Ionel, T H Parker, Gromov invariants and symplectic maps, Math. Ann. 314 (1999) 127

[9] P B Kronheimer, T S Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994) 797

[10] F Latour, Existence de 1–formes fermées non singulières dans une classe de cohomologie de de Rham, Inst. Hautes Études Sci. Publ. Math. (1994)

[11] J M Bismut, W Zhang, An extension of a theorem by Cheeger and Müller, Astérisque (1992) 235

[12] Y J Lee, Morse theory and Seiberg–Witten monopoles on 3–manifolds, PhD thesis, Harvard University (1997)

[13] Y Lim, Seiberg–Witten theory of 3–manifolds, preprint (1996)

[14] G Meng, C H Taubes, $\underline{\mathrm{SW}}=\mathrm{Milnor torsion}$, Math. Res. Lett. 3 (1996) 661

[15] J Milnor, Infinite cyclic coverings, from: "Collected works vol. 2", Publish or Perish (1996)

[16] J Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358

[17] S P Novikov, Multivalued functions and functionals. An analogue of the Morse theory, Dokl. Akad. Nauk SSSR 260 (1981) 31

[18] C Okonek, A Teleman, 3–dimensional Seiberg–Witten invariants and non-Kählerian geometry, Math. Ann. 312 (1998) 261

[19] A V Pazhitnov, On the Novikov complex for rational Morse forms, Ann. Fac. Sci. Toulouse Math. $(6)$ 4 (1995) 297

[20] A Pajitnov, Simple homotopy type of Novikov complex for closed 1–forms and Lefschetz zeta functions of the gradient flow,

[21] M Pozniak, Floer homology, Novikov rings, and clean intersections, PhD thesis, University of Warwick (1994)

[22] D A Salamon, Seiberg–Witten invariants of mapping tori, symplectic fixed points, and Lefschetz numbers, from: "Proceedings of 6th Gökova Geometry–Topology Conference" (1999) 117

[23] E H Spanier, Algebraic topology, Springer (1981)

[24] C H Taubes, The Seiberg–Witten and Gromov invariants, Math. Res. Lett. 2 (1995) 221

[25] C H Taubes, Counting pseudo-holomorphic submanifolds in dimension $4$, J. Differential Geom. 44 (1996) 818

[26] V G Turaev, Reidemeister torsion in knot theory, Uspekhi Mat. Nauk 41 (1986) 97, 240

[27] V G Turaev, Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 607, 672

[28] V Turaev, Torsion invariants of $\mathrm{Spin}^c$–structures on 3–manifolds, Math. Res. Lett. 4 (1997) 679

[29] V Turaev, A combinatorial formulation for the Seiberg–Witten invariants of 3–manifolds, Math. Res. Lett. 5 (1998) 583

[30] A Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949) 497

Cité par Sources :