Examples of Riemannian manifolds with positive curvature almost everywhere
Geometry & topology, Tome 3 (1999) no. 1, pp. 331-367.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the unit tangent bundle of S4 and a real cohomology P3 admit Riemannian metrics with positive sectional curvature almost everywhere. These are the only examples so far with positive curvature almost everywhere that are not also known to admit positive curvature.

DOI : 10.2140/gt.1999.3.331
Keywords: positive curvature, unit tangent bundle of $S^4$

Petersen, Peter 1 ; Wilhelm, Frederick 2

1 Department of Mathematics, University of California, Los Angeles, California 90095, USA
2 Department of Mathematics, University of California, Riverside, California 92521-0135, USA
@article{GT_1999_3_1_a13,
     author = {Petersen, Peter and Wilhelm, Frederick},
     title = {Examples of {Riemannian} manifolds with positive curvature almost everywhere},
     journal = {Geometry & topology},
     pages = {331--367},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     doi = {10.2140/gt.1999.3.331},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.331/}
}
TY  - JOUR
AU  - Petersen, Peter
AU  - Wilhelm, Frederick
TI  - Examples of Riemannian manifolds with positive curvature almost everywhere
JO  - Geometry & topology
PY  - 1999
SP  - 331
EP  - 367
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.331/
DO  - 10.2140/gt.1999.3.331
ID  - GT_1999_3_1_a13
ER  - 
%0 Journal Article
%A Petersen, Peter
%A Wilhelm, Frederick
%T Examples of Riemannian manifolds with positive curvature almost everywhere
%J Geometry & topology
%D 1999
%P 331-367
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.331/
%R 10.2140/gt.1999.3.331
%F GT_1999_3_1_a13
Petersen, Peter; Wilhelm, Frederick. Examples of Riemannian manifolds with positive curvature almost everywhere. Geometry & topology, Tome 3 (1999) no. 1, pp. 331-367. doi : 10.2140/gt.1999.3.331. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.331/

[1] T Aubin, Métriques riemanniennes et courbure, J. Differential Geometry 4 (1970) 383

[2] S Aloff, N R Wallach, An infinite family of distinct 7–manifolds admitting positively curved Riemannian structures, Bull. Amer. Math. Soc. 81 (1975) 93

[3] M Berger, Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive, Ann. Scuola Norm. Sup. Pisa $(3)$ 15 (1961) 179

[4] M Berger, On the diameter of some Riemannian manifolds, preprint (1962)

[5] M Berger, Trois remarques sur les variétés riemanniennes à courbure positive, C. R. Acad. Sci. Paris Sér. A-B 263 (1966)

[6] L Berard-Bergery, Les variétés riemanniennes homogènes simplement connexes de dimension impaire à courbure strictement positive, J. Math. Pures Appl. $(9)$ 55 (1976) 47

[7] J P Bourguignon, A Deschamps, P Sentenac, Quelques variations particulières d'un produit de métriques, Ann. Sci. École Norm. Sup. $(4)$ 6 (1973) 1

[8] J Cheeger, Some examples of manifolds of nonnegative curvature, J. Differential Geometry 8 (1973) 623

[9] J H Eschenburg, New examples of manifolds with strictly positive curvature, Invent. Math. 66 (1982) 469

[10] J H Eschenburg, Inhomogeneous spaces of positive curvature, Differential Geom. Appl. 2 (1992) 123

[11] J H Eschenburg, Freie isometrische Aktionen auf kompakten Lie-Gruppen mit positiv gekrümmten Orbiträumen, Schriftenreihe des Mathematischen Instituts der Universität Münster, 2 Serie, Universität Münster Mathematisches Institut (1984)

[12] D Gromoll, W Meyer, An exotic sphere with nonnegative sectional curvature, Ann. of Math. $(2)$ 100 (1974) 401

[13] K Grove, W Ziller, Curvature and symmetry of Milnor spheres, Ann. of Math. $(2)$ 152 (2000) 331

[14] A E Hatcher, A proof of a Smale conjecture, $\mathrm{Diff}(S^3)\simeq \mathrm{O}(4)$, Ann. of Math. $(2)$ 117 (1983) 553

[15] D Husemoller, Fibre bundles, Graduate Texts in Mathematics 20, Springer (1994)

[16] S Mandell, PhD thesis, SUNY, Stony Brook

[17] J C Nash, Positive Ricci curvature on fibre bundles, J. Differential Geom. 14 (1979) 241

[18] B O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966) 459

[19] A L Oniščik, Transitive compact transformation groups, Mat. Sb. $($N.S.$)$ 60 (102) (1963) 447

[20] A Rigas, Some bundles of non-negative curvature, Math. Ann. 232 (1978) 187

[21] N Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series 14, Princeton University Press (1951)

[22] M Strake, Curvature increasing metric variations, Math. Ann. 276 (1987) 633

[23] N R Wallach, Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann. of Math. $(2)$ 96 (1972) 277

[24] F Wilhelm, Exotic spheres with lots of positive curvatures, J. Geom. Anal. 11 (2001) 161

[25] F Wilhelm, An exotic sphere with positive curvature almost everywhere, J. Geom. Anal. 11 (2001) 519

Cité par Sources :