Piecewise Euclidean structures and Eberlein’s Rigidity Theorem in the singular case
Geometry & topology, Tome 3 (1999) no. 1, pp. 303-330.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this article, we generalize Eberlein’s Rigidity Theorem to the singular case, namely, one of the spaces is only assumed to be a CAT(0) topological manifold. As a corollary, we get that any compact irreducible but locally reducible locally symmetric space of noncompact type does not admit a nonpositively curved (in the Aleksandrov sense) piecewise Euclidean structure. Any hyperbolic manifold, on the other hand, does admit such a structure.

DOI : 10.2140/gt.1999.3.303
Keywords: piecewise Euclidean structure, CAT(0) space, Hadamard space, rigidity theorem

Davis, Michael W 1 ; Okun, Boris 2 ; Zheng, Fangyang 1

1 Department of Mathematics, The Ohio State University, Columbus, Ohio 43201, USA
2 Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37400, USA
@article{GT_1999_3_1_a12,
     author = {Davis, Michael W and Okun, Boris and Zheng, Fangyang},
     title = {Piecewise {Euclidean} structures and {Eberlein{\textquoteright}s} {Rigidity} {Theorem} in the singular case},
     journal = {Geometry & topology},
     pages = {303--330},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     doi = {10.2140/gt.1999.3.303},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.303/}
}
TY  - JOUR
AU  - Davis, Michael W
AU  - Okun, Boris
AU  - Zheng, Fangyang
TI  - Piecewise Euclidean structures and Eberlein’s Rigidity Theorem in the singular case
JO  - Geometry & topology
PY  - 1999
SP  - 303
EP  - 330
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.303/
DO  - 10.2140/gt.1999.3.303
ID  - GT_1999_3_1_a12
ER  - 
%0 Journal Article
%A Davis, Michael W
%A Okun, Boris
%A Zheng, Fangyang
%T Piecewise Euclidean structures and Eberlein’s Rigidity Theorem in the singular case
%J Geometry & topology
%D 1999
%P 303-330
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.303/
%R 10.2140/gt.1999.3.303
%F GT_1999_3_1_a12
Davis, Michael W; Okun, Boris; Zheng, Fangyang. Piecewise Euclidean structures and Eberlein’s Rigidity Theorem in the singular case. Geometry & topology, Tome 3 (1999) no. 1, pp. 303-330. doi : 10.2140/gt.1999.3.303. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.303/

[1] W Ballmann, Lectures on spaces of nonpositive curvature, DMV Seminar 25, Birkhäuser Verlag (1995)

[2] W Ballmann, M Gromov, V Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics 61, Birkhäuser (1985)

[3] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften 319, Springer (1999)

[4] S S Chen, P Eberlein, Isometry groups of simply connected manifolds of nonpositive curvature, Illinois J. Math. 24 (1980) 73

[5] R Charney, M Davis, Singular metrics of nonpositive curvature on branched covers of Riemannian manifolds, Amer. J. Math. 115 (1993) 929

[6] R Charney, M Davis, The polar dual of a convex polyhedral set in hyperbolic space, Michigan Math. J. 42 (1995) 479

[7] R Charney, M Davis, G Moussong, Nonpositively curved, piecewise Euclidean structures on hyperbolic manifolds, Michigan Math. J. 44 (1997) 201

[8] M W Davis, T Januszkiewicz, Hyperbolization of polyhedra, J. Differential Geom. 34 (1991) 347

[9] P Eberlein, Rigidity of lattices of nonpositive curvature, Ergodic Theory Dynam. Systems 3 (1983) 47

[10] P Eberlein, Isometry groups of simply connected manifolds of nonpositive curvature II, Acta Math. 149 (1982) 41

[11] P Eberlein, Euclidean de Rham factor of a lattice of nonpositive curvature, J. Differential Geom. 18 (1983) 209

[12] P Eberlein, Lattices in spaces of nonpositive curvature, Ann. of Math. $(2)$ 111 (1980) 435

[13] A Eskin, B Farb, Quasi-flats and rigidity in higher rank symmetric spaces, J. Amer. Math. Soc. 10 (1997) 653

[14] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[15] M Gromov, W Thurston, Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987) 1

[16] B Kleiner, B Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. (1997)

[17] B Leeb, A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry, Bonner Mathematische Schriften 326, Universität Bonn Mathematisches Institut (2000)

[18] O Loos, Symmetric spaces II: Compact spaces and classification, W. A. Benjamin, New York-Amsterdam (1969)

[19] G D Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies 78, Princeton University Press (1973)

[20] D Montgomery, L Zippin, Topological transformation groups, Interscience Publishers, New York-London (1955)

[21] P Planche, Structures de Finsler invariantes sur les espaces symétriques, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 1455

[22] M S Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete 68, Springer (1972)

[23] A Selberg, Recent developments in the theory of discontinuous groups of motions of symmetric spaces, from: "Proceedings of the Fifteenth Scandinavian Congress (Oslo, 1968)", Lecture Notes in Mathematics 118, Springer (1970) 99

Cité par Sources :