Non-positively curved aspects of Artin groups of finite type
Geometry & topology, Tome 3 (1999) no. 1, pp. 269-302.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Artin groups of finite type are not as well understood as braid groups. This is due to the additional geometric properties of braid groups coming from their close connection to mapping class groups. For each Artin group of finite type, we construct a space (simplicial complex) analogous to Teichmüller space that satisfies a weak nonpositive curvature condition and also a space “at infinity” analogous to the space of projective measured laminations. Using these constructs, we deduce several group-theoretic properties of Artin groups of finite type that are well-known in the case of braid groups.

DOI : 10.2140/gt.1999.3.269
Keywords: Artin groups, nonpositive curvature

Bestvina, Mladen 1

1 Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
@article{GT_1999_3_1_a11,
     author = {Bestvina, Mladen},
     title = {Non-positively curved aspects of {Artin} groups of finite type},
     journal = {Geometry & topology},
     pages = {269--302},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     doi = {10.2140/gt.1999.3.269},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.269/}
}
TY  - JOUR
AU  - Bestvina, Mladen
TI  - Non-positively curved aspects of Artin groups of finite type
JO  - Geometry & topology
PY  - 1999
SP  - 269
EP  - 302
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.269/
DO  - 10.2140/gt.1999.3.269
ID  - GT_1999_3_1_a11
ER  - 
%0 Journal Article
%A Bestvina, Mladen
%T Non-positively curved aspects of Artin groups of finite type
%J Geometry & topology
%D 1999
%P 269-302
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.269/
%R 10.2140/gt.1999.3.269
%F GT_1999_3_1_a11
Bestvina, Mladen. Non-positively curved aspects of Artin groups of finite type. Geometry & topology, Tome 3 (1999) no. 1, pp. 269-302. doi : 10.2140/gt.1999.3.269. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.269/

[1] M Bestvina, N Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997) 445

[2] M Bestvina, M Feighn, The topology at infinity of ${O}ut({F}_n)$, preprint (1997)

[3] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften 319, Springer (1999)

[4] N Brady, J Meier, Connectivity at infinity for right angled Artin groups, Trans. Amer. Math. Soc. 353 (2001) 117

[5] K S Brown, J Meier, Improper actions and higher connectivity at infinity, Comment. Math. Helv. 75 (2000) 171

[6] N Bourbaki, Groupes et algèbres de Lie. Chapitres IV–VI, Actualités Scientifiques et Industrielles 1337, Hermann (1968)

[7] T Brady, Artin groups of finite type with three generators, Michigan Math. J. 47 (2000) 313

[8] E Brieskorn, Sur les groupes de tresses, from: "Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401", Lecture Notes in Math. 317, Springer (1973) 21

[9] E Brieskorn, K Saito, Artin–Gruppen und Coxeter–Gruppen, Invent. Math. 17 (1972) 245

[10] R Charney, M W Davis, Finite $K(\pi, 1)$s for Artin groups, from: "Prospects in topology (Princeton, NJ, 1994)", Ann. of Math. Stud. 138, Princeton Univ. Press (1995) 110

[11] R Charney, M W Davis, The $K(\pi,1)$–problem for hyperplane complements associated to infinite reflection groups, J. Amer. Math. Soc. 8 (1995) 597

[12] R Charney, Artin groups of finite type are biautomatic, Math. Ann. 292 (1992) 671

[13] R Charney, Geodesic automation and growth functions for Artin groups of finite type, Math. Ann. 301 (1995) 307

[14] G R Conner, Discreteness properties of translation numbers in solvable groups, J. Group Theory 3 (2000) 77

[15] P Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972) 273

[16] F A Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. $(2)$ 20 (1969) 235

[17] S M Gersten, H Short, Small cancellation theory and automatic groups II, Invent. Math. 105 (1991) 641

[18] C C Squier, The homological algebra of Artin groups, Math. Scand. 75 (1994) 5

Cité par Sources :