Transversal torus knots
Geometry & topology, Tome 3 (1999) no. 1, pp. 253-268.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We classify positive transversal torus knots in tight contact structures up to transversal isotopy.

DOI : 10.2140/gt.1999.3.253
Keywords: tight, contact structure, transversal knots, torus knots

Etnyre, John B 1

1 Mathematics Department, Stanford University, Stanford, California 94305, USA
@article{GT_1999_3_1_a10,
     author = {Etnyre, John B},
     title = {Transversal torus knots},
     journal = {Geometry & topology},
     pages = {253--268},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     doi = {10.2140/gt.1999.3.253},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.253/}
}
TY  - JOUR
AU  - Etnyre, John B
TI  - Transversal torus knots
JO  - Geometry & topology
PY  - 1999
SP  - 253
EP  - 268
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.253/
DO  - 10.2140/gt.1999.3.253
ID  - GT_1999_3_1_a10
ER  - 
%0 Journal Article
%A Etnyre, John B
%T Transversal torus knots
%J Geometry & topology
%D 1999
%P 253-268
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.253/
%R 10.2140/gt.1999.3.253
%F GT_1999_3_1_a10
Etnyre, John B. Transversal torus knots. Geometry & topology, Tome 3 (1999) no. 1, pp. 253-268. doi : 10.2140/gt.1999.3.253. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.253/

[1] B Aebischer, M Borer, M Kälin, C Leuenberger, H M Reimann, Symplectic geometry, Progress in Mathematics 124, Birkhäuser Verlag (1994)

[2] S Akbulut, R Matveyev, A note on contact structures, Pacific J. Math. 182 (1998) 201

[3] D Bennequin, Entrelacements et équations de Pfaff, from: "Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982)", Astérisque 107, Soc. Math. France (1983) 87

[4] Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441

[5] Y Eliashberg, Contact 3–manifolds twenty years since J. Martinet's work, Ann. Inst. Fourier (Grenoble) 42 (1992) 165

[6] Y Eliashberg, Legendrian and transversal knots in tight contact 3–manifolds, from: "Topological methods in modern mathematics (Stony Brook, NY, 1991)", Publish or Perish (1993) 171

[7] Y Eliashberg, M Fraser, Classification of topologically trivial Legendrian knots, from: "Geometry, topology, and dynamics (Montreal, PQ, 1995)", CRM Proc. Lecture Notes 15, Amer. Math. Soc. (1998) 17

[8] J Etnyre, Symplectic Constructions on $4$–Manifolds, PhD thesis, University of Texas (1996)

[9] D Fuchs, S Tabachnikov, Invariants of Legendrian and transverse knots in the standard contact space, Topology 36 (1997) 1025

[10] E Giroux, Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637

[11] E Giroux, Topologie de contact en dimension $3$ (autour des travaux de Yakov Eliashberg), Astérisque 216 (1993) 7

[12] Y Kanda, The classification of tight contact structures on the 3–torus, Comm. Anal. Geom. 5 (1997) 413

[13] R Kirby, Problems in low-dimensional topology, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35

[14] S Makar-Limanov, Tight contact structures on solid tori, Trans. Amer. Math. Soc. 350 (1998) 1013

[15] L Rudolph, An obstruction to sliceness via contact geometry and “classical” gauge theory, Invent. Math. 119 (1995) 155

Cité par Sources :