Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We classify positive transversal torus knots in tight contact structures up to transversal isotopy.
Etnyre, John B 1
@article{GT_1999_3_1_a10, author = {Etnyre, John B}, title = {Transversal torus knots}, journal = {Geometry & topology}, pages = {253--268}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {1999}, doi = {10.2140/gt.1999.3.253}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.253/} }
Etnyre, John B. Transversal torus knots. Geometry & topology, Tome 3 (1999) no. 1, pp. 253-268. doi : 10.2140/gt.1999.3.253. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.253/
[1] Symplectic geometry, Progress in Mathematics 124, Birkhäuser Verlag (1994)
, , , , ,[2] A note on contact structures, Pacific J. Math. 182 (1998) 201
, ,[3] Entrelacements et équations de Pfaff, from: "Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982)", Astérisque 107, Soc. Math. France (1983) 87
,[4] Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441
,[5] Contact 3–manifolds twenty years since J. Martinet's work, Ann. Inst. Fourier (Grenoble) 42 (1992) 165
,[6] Legendrian and transversal knots in tight contact 3–manifolds, from: "Topological methods in modern mathematics (Stony Brook, NY, 1991)", Publish or Perish (1993) 171
,[7] Classification of topologically trivial Legendrian knots, from: "Geometry, topology, and dynamics (Montreal, PQ, 1995)", CRM Proc. Lecture Notes 15, Amer. Math. Soc. (1998) 17
, ,[8] Symplectic Constructions on $4$–Manifolds, PhD thesis, University of Texas (1996)
,[9] Invariants of Legendrian and transverse knots in the standard contact space, Topology 36 (1997) 1025
, ,[10] Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637
,[11] Topologie de contact en dimension $3$ (autour des travaux de Yakov Eliashberg), Astérisque 216 (1993) 7
,[12] The classification of tight contact structures on the 3–torus, Comm. Anal. Geom. 5 (1997) 413
,[13] Problems in low-dimensional topology, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35
,[14] Tight contact structures on solid tori, Trans. Amer. Math. Soc. 350 (1998) 1013
,[15] An obstruction to sliceness via contact geometry and “classical” gauge theory, Invent. Math. 119 (1995) 155
,Cité par Sources :