Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Integral symplectic 4–manifolds may be described in terms of Lefschetz fibrations. In this note we give a formula for the signature of any Lefschetz fibration in terms of the second cohomology of the moduli space of stable curves. As a consequence we see that the sphere in moduli space defined by any (not necessarily holomorphic) Lefschetz fibration has positive “symplectic volume”; it evaluates positively with the Kähler class. Some other applications of the signature formula and some more general results for genus two fibrations are discussed.
Smith, Ivan 1
@article{GT_1999_3_1_a8, author = {Smith, Ivan}, title = {Lefschetz fibrations and the {Hodge} bundle}, journal = {Geometry & topology}, pages = {211--233}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {1999}, doi = {10.2140/gt.1999.3.211}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.211/} }
Smith, Ivan. Lefschetz fibrations and the Hodge bundle. Geometry & topology, Tome 3 (1999) no. 1, pp. 211-233. doi : 10.2140/gt.1999.3.211. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.211/
[1] Symplectic Lefschetz fibrations with arbitrary fundamental groups, J. Differential Geom. 54 (2000) 489
, , , ,[2] The Picard groups of the moduli spaces of curves, Topology 26 (1987) 153
, ,[3] The logarithm of the Dedekind $\eta$–function, Math. Ann. 278 (1987) 335
,[4] Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43
, , ,[5] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 4, Springer (1984)
, , ,[6] Braids, links, and mapping class groups, Annals of Mathematics Studies 82, Princeton University Press (1974)
,[7] Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982)
,[8] The monodromy of genus two pencils, PhD thesis, Columbia University (1978)
,[9] A construction of surface bundles over surfaces with non-zero signature, Osaka J. Math. 35 (1998) 915
,[10] On determinant line bundles, from: "Mathematical aspects of string theory (San Diego, CA, 1986)", Adv. Ser. Math. Phys. 1, World Sci. Publishing (1987) 189
,[11] Genus two Lefschetz fibrations, preprint (1997)
,[12] Algebraic geometry, Graduate Texts in Mathematics 52, Springer (1977)
,[13] Lefschetz fibrations of genus two—a topological approach, from: "Topology and Teichmüller spaces (Katinkulta, 1995)", World Sci. Publ., River Edge, NJ (1996) 123
,[14] Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, Vol. II", Progr. Math. 36, Birkhäuser (1983) 271
,[15] Signatures of Lefschetz fibrations, Pacific J. Math. 202 (2002) 99
,[16] On hyperelliptic $C^\infty$-Lefschetz fibrations of four-manifolds, Commun. Contemp. Math. 1 (1999) 255
, ,[17] Symplectic geometry of Lefschetz fibrations, DPhil thesis, University of Oxford (1998)
,[18] On the homology of the moduli space of stable curves, Ann. of Math. $(2)$ 118 (1983) 491
,[19] Algebraic surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 61, Springer (1971)
,Cité par Sources :