Lefschetz fibrations and the Hodge bundle
Geometry & topology, Tome 3 (1999) no. 1, pp. 211-233.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Integral symplectic 4–manifolds may be described in terms of Lefschetz fibrations. In this note we give a formula for the signature of any Lefschetz fibration in terms of the second cohomology of the moduli space of stable curves. As a consequence we see that the sphere in moduli space defined by any (not necessarily holomorphic) Lefschetz fibration has positive “symplectic volume”; it evaluates positively with the Kähler class. Some other applications of the signature formula and some more general results for genus two fibrations are discussed.

DOI : 10.2140/gt.1999.3.211
Keywords: symplectic geometry, Lefschetz fibration, stable curves, signature

Smith, Ivan 1

1 New College, University of Oxford, Oxford OX1 3BN, United Kingdom
@article{GT_1999_3_1_a8,
     author = {Smith, Ivan},
     title = {Lefschetz fibrations and the {Hodge} bundle},
     journal = {Geometry & topology},
     pages = {211--233},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     doi = {10.2140/gt.1999.3.211},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.211/}
}
TY  - JOUR
AU  - Smith, Ivan
TI  - Lefschetz fibrations and the Hodge bundle
JO  - Geometry & topology
PY  - 1999
SP  - 211
EP  - 233
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.211/
DO  - 10.2140/gt.1999.3.211
ID  - GT_1999_3_1_a8
ER  - 
%0 Journal Article
%A Smith, Ivan
%T Lefschetz fibrations and the Hodge bundle
%J Geometry & topology
%D 1999
%P 211-233
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.211/
%R 10.2140/gt.1999.3.211
%F GT_1999_3_1_a8
Smith, Ivan. Lefschetz fibrations and the Hodge bundle. Geometry & topology, Tome 3 (1999) no. 1, pp. 211-233. doi : 10.2140/gt.1999.3.211. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.211/

[1] J Amorós, F Bogomolov, L Katzarkov, T Pantev, Symplectic Lefschetz fibrations with arbitrary fundamental groups, J. Differential Geom. 54 (2000) 489

[2] E Arbarello, M Cornalba, The Picard groups of the moduli spaces of curves, Topology 26 (1987) 153

[3] M Atiyah, The logarithm of the Dedekind $\eta$–function, Math. Ann. 278 (1987) 335

[4] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43

[5] W Barth, C Peters, A Van De Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 4, Springer (1984)

[6] J S Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies 82, Princeton University Press (1974)

[7] K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982)

[8] K N Chakiris, The monodromy of genus two pencils, PhD thesis, Columbia University (1978)

[9] H Endo, A construction of surface bundles over surfaces with non-zero signature, Osaka J. Math. 35 (1998) 915

[10] D S Freed, On determinant line bundles, from: "Mathematical aspects of string theory (San Diego, CA, 1986)", Adv. Ser. Math. Phys. 1, World Sci. Publishing (1987) 189

[11] T Fuller, Genus two Lefschetz fibrations, preprint (1997)

[12] R Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer (1977)

[13] Y Matsumoto, Lefschetz fibrations of genus two—a topological approach, from: "Topology and Teichmüller spaces (Katinkulta, 1995)", World Sci. Publ., River Edge, NJ (1996) 123

[14] D Mumford, Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, Vol. II", Progr. Math. 36, Birkhäuser (1983) 271

[15] B Ozbagci, Signatures of Lefschetz fibrations, Pacific J. Math. 202 (2002) 99

[16] B Siebert, G Tian, On hyperelliptic $C^\infty$-Lefschetz fibrations of four-manifolds, Commun. Contemp. Math. 1 (1999) 255

[17] I Smith, Symplectic geometry of Lefschetz fibrations, DPhil thesis, University of Oxford (1998)

[18] S Wolpert, On the homology of the moduli space of stable curves, Ann. of Math. $(2)$ 118 (1983) 491

[19] O Zariski, Algebraic surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 61, Springer (1971)

Cité par Sources :