Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A smooth, compact 4–manifold with a Riemannian metric and has a non-trivial, closed, self-dual 2–form. If the metric is generic, then the zero set of this form is a disjoint union of circles. On the complement of this zero set, the symplectic form and the metric define an almost complex structure; and the latter can be used to define pseudo-holomorphic submanifolds and subvarieties. The main theorem in this paper asserts that if the 4–manifold has a non zero Seiberg–Witten invariant, then the zero set of any given self-dual harmonic 2–form is the boundary of a pseudo-holomorphic subvariety in its complement.
Taubes, Clifford Henry 1
@article{GT_1999_3_1_a7, author = {Taubes, Clifford Henry}, title = {Seiberg{\textendash}Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic 2{\textendash}forms}, journal = {Geometry & topology}, pages = {167--210}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {1999}, doi = {10.2140/gt.1999.3.167}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.167/} }
TY - JOUR AU - Taubes, Clifford Henry TI - Seiberg–Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic 2–forms JO - Geometry & topology PY - 1999 SP - 167 EP - 210 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.167/ DO - 10.2140/gt.1999.3.167 ID - GT_1999_3_1_a7 ER -
%0 Journal Article %A Taubes, Clifford Henry %T Seiberg–Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic 2–forms %J Geometry & topology %D 1999 %P 167-210 %V 3 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.167/ %R 10.2140/gt.1999.3.167 %F GT_1999_3_1_a7
Taubes, Clifford Henry. Seiberg–Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic 2–forms. Geometry & topology, Tome 3 (1999) no. 1, pp. 167-210. doi : 10.2140/gt.1999.3.167. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.167/
[1] Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978) 425
, , ,[2] Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996) 666
,[3] Instantons and four-manifolds, Mathematical Sciences Research Institute Publications 1, Springer (1984)
, ,[4] Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307
,[5] Harmonic forms for generic metrics, preprint (1997)
,[6] Circle-valued Morse theory, Reidemeister torsion, and Seiberg-Witten invariants of 3–manifolds, Topology 38 (1999) 861
, ,[7] Circle-valued Morse theory and Reidemeister torsion, Geom. Topol. 3 (1999) 369
, ,[8]
, ,[9] Yamabe constants and the perturbed Seiberg–Witten equations, Comm. Anal. Geom. 5 (1997) 535
,[10] $J$–holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994)
, ,[11] The Seiberg–Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes 44, Princeton University Press (1996)
,[12] Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften 130, Springer New York, New York (1966)
,[13] Compactness, from: "Holomorphic curves in symplectic geometry", Progr. Math. 117, Birkhäuser (1994) 233
,[14] Pseudo-holomorphic maps and bubble trees, J. Geom. Anal. 3 (1993) 63
, ,[15] $\mathrm{SW}{\Rightarrow}\mathrm{Gr}$: from the Seiberg–Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996) 845
,[16] The structure of pseudo-holomorphic subvarieties for a degenerate almost complex structure and symplectic form on $S^1\times B^3$, Geom. Topol. 2 (1998) 221
,[17] The geometry of the Seiberg–Witten invariants, from: "Surveys in differential geometry, Vol. III (Cambridge, MA, 1996)", Int. Press, Boston (1998) 299
,[18] The Seiberg–Witten and Gromov invariants, Math. Res. Lett. 2 (1995) 221
,[19] $\mathrm{Gr}=\mathrm{SW}$: counting curves and connections, from: "Seiberg Witten and Gromov invariants for symplectic 4–manifolds", First Int. Press Lect. Ser. 2, International Press (2000) 275
,[20] $mathrm{SW}{\Rightarrow}\mathrm{Gr}$: from the Seiberg–Witten equations to pseudo-holomorphic curves, from: "Seiberg Witten and Gromov invariants for symplectic 4-manifolds", First Int. Press Lect. Ser. 2, International Press (2000) 1
,[21] A combinatorial formulation for the Seiberg–Witten invariants of 3–manifolds, Math. Res. Lett. 5 (1998) 583
,[22] Gromov's compactness theorem for pseudo holomorphic curves, Trans. Amer. Math. Soc. 342 (1994) 671
,[23] Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769
,Cité par Sources :