Seiberg–Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic 2–forms
Geometry & topology, Tome 3 (1999) no. 1, pp. 167-210.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A smooth, compact 4–manifold with a Riemannian metric and b2+ 1 has a non-trivial, closed, self-dual 2–form. If the metric is generic, then the zero set of this form is a disjoint union of circles. On the complement of this zero set, the symplectic form and the metric define an almost complex structure; and the latter can be used to define pseudo-holomorphic submanifolds and subvarieties. The main theorem in this paper asserts that if the 4–manifold has a non zero Seiberg–Witten invariant, then the zero set of any given self-dual harmonic 2–form is the boundary of a pseudo-holomorphic subvariety in its complement.

DOI : 10.2140/gt.1999.3.167
Keywords: Four–manifold invariants, symplectic geometry

Taubes, Clifford Henry 1

1 Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, USA
@article{GT_1999_3_1_a7,
     author = {Taubes, Clifford Henry},
     title = {Seiberg{\textendash}Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic 2{\textendash}forms},
     journal = {Geometry & topology},
     pages = {167--210},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1999},
     doi = {10.2140/gt.1999.3.167},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.167/}
}
TY  - JOUR
AU  - Taubes, Clifford Henry
TI  - Seiberg–Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic 2–forms
JO  - Geometry & topology
PY  - 1999
SP  - 167
EP  - 210
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.167/
DO  - 10.2140/gt.1999.3.167
ID  - GT_1999_3_1_a7
ER  - 
%0 Journal Article
%A Taubes, Clifford Henry
%T Seiberg–Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic 2–forms
%J Geometry & topology
%D 1999
%P 167-210
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.167/
%R 10.2140/gt.1999.3.167
%F GT_1999_3_1_a7
Taubes, Clifford Henry. Seiberg–Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic 2–forms. Geometry & topology, Tome 3 (1999) no. 1, pp. 167-210. doi : 10.2140/gt.1999.3.167. http://geodesic.mathdoc.fr/articles/10.2140/gt.1999.3.167/

[1] M F Atiyah, N Hitchin, I M Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978) 425

[2] S K Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996) 666

[3] D S Freed, K K Uhlenbeck, Instantons and four-manifolds, Mathematical Sciences Research Institute Publications 1, Springer (1984)

[4] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[5] K Honda, Harmonic forms for generic metrics, preprint (1997)

[6] M Hutchings, Y J Lee, Circle-valued Morse theory, Reidemeister torsion, and Seiberg-Witten invariants of 3–manifolds, Topology 38 (1999) 861

[7] M Hutchings, Y J Lee, Circle-valued Morse theory and Reidemeister torsion, Geom. Topol. 3 (1999) 369

[8] D Kotschick, P B Kronheimer, T S Mrowka

[9] C Lebrun, Yamabe constants and the perturbed Seiberg–Witten equations, Comm. Anal. Geom. 5 (1997) 535

[10] D Mcduff, D Salamon, $J$–holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994)

[11] J W Morgan, The Seiberg–Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes 44, Princeton University Press (1996)

[12] C B Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften 130, Springer New York, New York (1966)

[13] P Pansu, Compactness, from: "Holomorphic curves in symplectic geometry", Progr. Math. 117, Birkhäuser (1994) 233

[14] T H Parker, J G Wolfson, Pseudo-holomorphic maps and bubble trees, J. Geom. Anal. 3 (1993) 63

[15] C H Taubes, $\mathrm{SW}{\Rightarrow}\mathrm{Gr}$: from the Seiberg–Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996) 845

[16] C H Taubes, The structure of pseudo-holomorphic subvarieties for a degenerate almost complex structure and symplectic form on $S^1\times B^3$, Geom. Topol. 2 (1998) 221

[17] C H Taubes, The geometry of the Seiberg–Witten invariants, from: "Surveys in differential geometry, Vol. III (Cambridge, MA, 1996)", Int. Press, Boston (1998) 299

[18] C H Taubes, The Seiberg–Witten and Gromov invariants, Math. Res. Lett. 2 (1995) 221

[19] C H Taubes, $\mathrm{Gr}=\mathrm{SW}$: counting curves and connections, from: "Seiberg Witten and Gromov invariants for symplectic 4–manifolds", First Int. Press Lect. Ser. 2, International Press (2000) 275

[20] C H Taubes, $mathrm{SW}{\Rightarrow}\mathrm{Gr}$: from the Seiberg–Witten equations to pseudo-holomorphic curves, from: "Seiberg Witten and Gromov invariants for symplectic 4-manifolds", First Int. Press Lect. Ser. 2, International Press (2000) 1

[21] V Turaev, A combinatorial formulation for the Seiberg–Witten invariants of 3–manifolds, Math. Res. Lett. 5 (1998) 583

[22] R Ye, Gromov's compactness theorem for pseudo holomorphic curves, Trans. Amer. Math. Soc. 342 (1994) 671

[23] E Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769

Cité par Sources :